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ABSTRACT 

In this  paper  we s t udy  the  d e g e n e r a t e  m i x e d  b o u n d a r y  v a l u e  

p r o b l e m :  

P u  = f in ~, B u  -= g on OR \ F, 

where  ~ is a domain  in R n , P is a second order linear elliptic opera tor  

wi th  real coefficients, F C_ 0f~ is a relatively closed set, and  B is an  

oblique b o u n d a r y  opera tor  defined only on af~ \ F which is a s s u m e d  to 

be a s m o o t h  par t  of the  boundary .  

The  a im of this  research is to es tabl ish  some basic resul ts  concerning 

posit ive solutions.  In part icular ,  we s t udy  the  solvability of the  above 

b o u n d a r y  value problem in the  class of nonnega t ive  funct ions,  and  prop- 

ert ies of the  generalized principal  eigenvalue, the  g round  s ta te ,  and  the  

Green  func t ion  associa ted wi th  this  problem. The  not ion of criticality 

and  subcri t ical i ty  for this  problem is in t roduced,  and  a criticality theory  

for this  problem is establ ished.  T he  analogs for the  generalized Dirichlet 

b o u n d a r y  value problem, where F = 012, were examined  intensively by 

m a n y  authors .  
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1. I n t r o d u c t i o n  

The aim of this paper is to study some positivity properties of a degenerate 

mixed boundary value problem for a second order elliptic operator P in a general 

domain in ~t C_ R n , where an oblique boundary operator B is defined only on a 

smooth and relatively open portion of the boundary. On the remaining part of 

the boundary which we call the s ingu la r  set  F, we do not explicitly impose any 

boundary condition. Nevertheless, since we look for positive solutions of minimal 

growth at F (and at infinity), the boundary condition on F should be interpreted 

as a zero Dirichlet boundary condition in some generalized sense. Therefore, we 

indeed deal with a mixed boundary value problem. 

Let ~t be a domain in R n , and let P be a second order linear elliptic differential 

operator with real coefficients of the form 

n n 
(1.1) P u  = - Z a i j ( x ) O i j u + ~ - ~ b i ( x ) O i u + c ( x ) u ,  x C a. 

i , j=l i=l 

Let F C_ 0fl be a relatively closed set, and suppose that 0gt \ F is a C 2'~- 

portion of 0~. For x E 0fl \ F, let ~(x) be the unit outward normal from the 

boundary, and if(x) be a unit vector pointing outward from the boundary. Let 

B be an oblique boundary operator of the form 

Ou 
(1.2) B u  = x �9 0 a \ r .  

We always assume that 

(1.3) a i j , b ~ , c E C a ( ~ \ F ) ,  l _ < i , j < n ,  

and that  for all x �9 ~ \ F and ~ �9 R ~ \{0},  

n n n 
(1.4) 0 < i o ( x  ) ~ 2  ~ Z aij(x)~i~J ~ i ( x )  Z ~2. 

i=l i , j=l i~1 

Furthermore, it is always assumed that 

R e m a r k  I. 1: 

operator B, namely, 

(1.6) 

= F, Off ". F E C 2'~, 7, 3, ~ E Cl'~(Ogt ". F), and 

7 _ > 0 , 3 > 0  and ~ . ~ > 0 o n 0 f l \ F .  

Sometimes we use the equivalent formulation for the boundary 
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where 3' >_ 0, 7,/~ �9 C1'~ (Oft \ F), and ft. ff > 0. 

We investigate the d e g e n e r a t e  m i x e d  b o u n d a r y  va lue  p r o b l e m  

127 

(1.7) P u - -  f i n f t ,  B u = g o n O f t \ F .  

Note that we do not exclude the case where F = 0, and the case where F = Oft. 

Recall also that the boundary condition on F should be interpreted as a zero 

Dirichlet boundary condition in some generalized sense. It turns out that  in the 

regular case, where the closed set F is a smooth relatively open part of Oft, we 

actually impose zero Dirichlet boundary condition on F. It follows that  classical 

boundary value problems like the Dirichlet, Neumann, Robin, Zaremba and even 

some cases of the Poincar6 problem are covered by our setting. For related results 

concerning these boundary value problems, see [2, 6, 8, 11, 12, 13, 14, 15, 20, 30, 

and the references therein]. 

We study the principal eigenvalue, criticality theory, and general properties of 

the cone of positive solutions. The analogs for the gene ra l i zed  D i r i ch l e t  p r o b -  

l em  (where F = 0ft, and ft is an arbitrary domain) were examined intensively in 

[18, 21, 22, 23, 25, and the references therein]. Note that this case is also covered 

by our setting. 

When one compares the present problem with the generalized Dirichlet bound- 

ary value problem, one sees that some fundamental properties which hold true for 

the generalized Dirichlet boundary value problem are not valid or at least are not 

obvious in our case (see Examples 7.8 and 8.21). Consequently, the construction 

of the Green function for our case is much more complicated. Moreover, even if 

we impose on F the Dirichlet boundary condition, then already in the smooth 

bounded domain case, the problem is in general not elliptic. Another difficulty 

that arises is that  the natural adjoint boundary operator does not satisfy the 

assumption (1.5). In this paper, we refrain from discussing the adjoint problem. 

The following sets of positive solutions and supersolutions play an important 

role in our study: 

Definition 1.2: We define the following families: 

(1.8) 

(1.9) 

7{p,B(ft) = Up  = {u E C2(ft) N Cl(~t \ F)[ u > 0 in ft, 

P u  = 0 in ft, and B u  >_ 0 on Oft \ F}, 

 ~ = ~ = {u e c 2 ( f t ) n  c1( \ r)l u > 0 in ft, 

P u  = O in ft, a n d B u = 0 o n 0 f t \ F } ,  
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S~'[p,B(~) ---- S~'~p ---- {it �9 C 2 ( a )  N c l ( ~  \ r ) l  it > 0 in a ,  

(1.10) Pit >_ 0 in ft, and Bu >_ 0 on Oft \ F}, 

S~0p, B(~'~) = S~'/O = {it �9 C2(f t )  1"7 C I ( ~  \ r ) [  u > 0 in ~-~, 

(1.11) Pit >_ 0 in ft, and Bu = 0 on Oft \ I'}. 

If u �9 SHp, B(f~), then it is said to be a posi t ive  supe r so lu t i on  of the operator 

(P, B) in ft. 

We consider the one-parameter family of operators 

Ptu := Pu - tW(x)u in ft, 

where W �9 C~(ft \ F) is a real function, and t �9 R. We also introduce the set 

S = {t �9 R I ~e , ( f t )  r 0}. 

If u belongs to one of the families (1.8)-(1.11), then Hopf's lemma implies that 
u > 0 on ft \ F. The starting point of our analysis is Theorem 2.1, where we 

extend slightly the generalized maximum principle [26]; it holds if SUp r 0 and 

either F r 0 or ~ is unbounded. Furthermore, Theorem 5.2 states that  in this 

case 7-/~ r 0. Therefore, 

s = {t �9 al # 0} = {t e RI s p, # 0}. 

Moreover, as in the Dirichlet case, it follows that S is a closed interval, and if 

S r 0, then S is bounded if and only if W changes its sign (see Lemmas 6.3 and 

6.5). 
In [14], G. M. Lieberman used the Perron method to derive the solvability 

of the regular oblique boundary value problem in bounded domains under the 

assumption that c _> 0. Using the same approach, we generalize this result, 

and prove the solvability of the degenerate problem, in the class of nonnegative 

functions, and in any domain, under the weaker assumption that  STtp r O. The 

key ingredient of this approach is the property of local solvability, which is proved 

in Section 3. In Section 4, the Perron process is applied and minimal positive 

solutions are obtained for two basic degenerate problems (see Theorems 4.1 and 

4.4). 
In Section 5, we define the generalized principal eigenvalue for the boundary 

value problem (1.7) as 

Ao = Ao(fl, P ,W,B) :=  supS = sup{t �9 R I ~t~pt(~'~ ) ~ 0}, 
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and prove in Lemma 7.1 that  in regular cases, A0 is the classical principal eigen- 

value [2], namely, the only eigenvalue with a positive eigenfunction. 

H. Berestycki, L. Nirenberg and S. R. S. Varadhan (in [4]) considered the 

Dirichlet boundary value problem in a bounded domain. They proved that  the 

principal eigenvalue A D is an increasing, concave, Lipschitz continuous function 

of c (with respect to the L~-norm),  and a decreasing function of the domain (see 

also [17, 25]). In Section 7 it is shown that A0 is a concave, Lipschitz continuous, 

increasing function of the coefficient c, and a continuous monotone function of 

the weight function W. In addition, Ao is a decreasing function of the domain in 

an appropriate manner. Note that in general, the monotonicity with respect to 

the domain in the standard sense does not hold true even for the regular oblique 

derivative problem (see Example 7.8). 

Section 8 is devoted to the criticality theory. First, we define for our problem 

the notions of posi t ive  solut ions  of  m in ima l  g r o w t h  a t  inf ini ty  of  ~, the 

g r o u n d  s ta te ,  and the G r e e n  func t ion  G~(x,  y). In Theorem 8.5, it is proved 

that the Perron solution of a certain problem in a neighborhood of infinity in f~ 

is a positive solution of minimal growth. 

We generalize the notion of criticality and subcriticality which was studied in 

[18, 21, 22, 23, 29] for the generalized Dirichlet problem. The operator (P, B) 

is cr i t ical  in f~ if the problem admits a ground state with eigenvalue zero, that  

is, a positive solution in 74~,B(f~ ) of minimal growth. The operator (P, B) is 

subcr i t i ca l  if it has a positive solution, but does not possess a ground state, and 

(P, B) is superc r i t i ca l  if S~'[p,B(~'~) = O. 

We summarize the main results of Section 8 in the following two theorems. 
These results are well known for the generalized Dirichlet problem. 

THEOREM 1.3: The following assertions are equivalent: 

(a) The operator (P, B) is critical in fl. 

(b) dimST/p(f~) = 1. 

(c) 74~ ~ 0, and (P, B) does not admit a Green function in fl. 

(d) = # 0. 

(e) For any W ~> 0, the operator P + W is subcritical and the operator P - W 
is supercritical in 12. 

THEOREM 1.4: The following assertions are equivalent: 

(a) The operator (P, B) is subcritical in ~. 

(b) dimST/p(f~) > 1. 

(c) The operator (P, B) admits a Green function in ~). 
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(d) ST-lp(~t) \ 7-l~ # O. 

(e) For any W �9 C~ (~t) there exists eo > 0 such that the operator P - e W  is 

subcritical in ~ for every [e[ < eo. 

NOTATION.  

~ : {X= ( X l , . . . , X n ) E ~ n l x n  > O}, ~ = {XE Rn[xn : O ) .  

B ~ ( x o )  = { x  �9 Rnl Ix - xol < ~}, B~ = B~(0). 

lulo;~ = sup lul, I~lk;n = Ilullc~(c~) = ~ IDZulo;~- 
131<k 

[u]a;a = sup lu(x) - u(y)l where 0 < a < 1, 
�9 ~ I x - y [  ~ ' 

x,yE~ 

Mk,.;a  -- Ilullc,,o(a) =- ~ ID~ulo;a + ~ [D3ul-;a �9 
131<k 13l=k 

WEIGHTED H6LDER NORMS. Let E C_ 0~2, 0 _< k �9 Z, 0 < a _< 1, k + a + b  >_ 0; 

tt(x) -- dist(x, 0fl \ E), ~ = {x �9 ~[ tt(x) > 5}. 

(b) OO}, u k,~;n =sup{an+~+b]u]k,~;a~}, Ck'~'(b)(a)---- {u] (b) k,a;~2 ~ 5>O 

f (b) = inf{[g](2,)~;a[ g �9 Ck'"'(b)(~2), lim g(x) = f(x0)}. 
k,~;E x-~xoEE 

In a given context, the same letter C will be used to denote different constants 

depending on the same set of arguments. 

2. Aux i l i a ry  resu l t s  

Let P and B be operators of the forms (1.1) and (1.2) satisfying (1.3) (1.5). The 

first theorem is a version of the generalized maximum principle [26]: 

THEOREM 2.1 (Generalized maximum principle): Let ~ be a domain in R n. In 

case that ~ is bounded, assume further that F ~ @. Suppose that S~-~ p ~ @. 

Assume that v e C 2 (~2) ~ C 1 (~ \ F) satisfies 

(2.1) P v > _ O i n ~ ,  B v > _ O o n O ~ \ F ,  l iminfV _> 0, and l iminfV _> 0, 
x-~r U x-~oo U 
xE~ xEfl 

for some u E STlp.  Then either v > 0 in 0 \ F, or v = 0 in ~ \ F. 

Proof." By the definition of ST-lp, and Hopf's lemma, u > 0 in ~) \ F, and 

(2.2) Pu>__Oin~,  and B u > _ O o n O ~ \ F .  
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Define PUw = p(u~) on ~,  tha t  is, 
U 

p U w =  P~w+cUw = -  ~ a~jOijw+ ~ b uOiw + cUw. 
i , j= l  i=l  

u u 2 ~ a i j O j u  + bi are in C ( ~  \ F), and Clearly, the coefficients aij = a i j ,  b i = - ~  

c ~ = PU(1) = - ~  _> 0. We also define B~w = B(~)~ on 0 ~ \ F ,  namely, 
ow ~/u Bu ~[u _ B ~ w = 7 ~ w + / ~ , w h e r e  - ~ Thus,  > 0 a n d / ? > 0 o n 0 ~ \ F .  Now 

take w = v ,  so P~w = -~ >_ 0 in ~ ,  B~w = ~ >_ 0 on 012 \ F, l im infx-~r w >_ 0, 

and l im i n f x - ~  w >_ 0. 

If  w = k, where k is a constant ,  then  l iminfx-~r  w > 0, or l i m i n f x _ ~  w _> 0 

implies tha t  k _> 0, and v = ku. Therefore,  either v = 0 in ~,  or v > 0 in ~.  

Suppose t ha t  w r const. I f  a point  x E ~ such tha t  w(x) < 0 exists, then  by 

the s t rong m a x i m u m  principle for the opera tor  p u  either 

min  ~ l i m i n f w ,  l i m i n f w ~  < 0, 

or there is a m in imum point  x0 E 0 ~  \ F such tha t  W(Xo) < 0. The  first case 

contradicts  our assumpt ion.  In the second case, since P~w ~ -cUw ~ 0 in a 

neighborhood of x0, it follows from Hopf ' s  l emma  for the opera to r  P~  and the 

function w tha t  ~ < 0. Thus,  BUw(xo) < 0, contradict ing B~w > O. 

Consequently,  w >_ 0 in ~,  and, by the strong m a x i n m m  principle, either w > 0 

in ~ ,  or w = 0 in ~.  Hence, either v > 0 in f~, or v = 0 in ~.  Moreover,  if v > 0 

in ~,  then, by Hopf ' s  l emma,  v > 0 in ~ \ F. I 

R e m a r k  2.2: When  ~2 is a bounded  domain  and F = 0, the above generalized 

m a x i m u m  principle holds t rue provided tha t  u E S 7 / \  7t ~ Indeed, if w ~ const., 

then  the proof  is identical, and when w = const, the proof  is trivial.  

We extend slightly a l e m m a  of J. Serrin [28]. 

LEMMA 2.3: Let ~2 be a bounded domain in ~n of class 6 2. Assume that P 

is a uniformly elliptic operator in ~ of the form (1.1) with C~(~) coefficients, 

and B is a boundary operator of the form (1.2) satisfying (1.5). I f  there exists a 

function u(x) E C2(~~) ( /Cl(~ \ r)  such that 

(2.3) u > 0 ,  Pu > O in ~, and Bu >_ O on O~ ". F, 

then there exists a function ~(x) C C2(12) M C 1 ( ~  \ F) such that 

(2.4) inf f i > 0 ,  P ~ > 0 i n f L  and Bfz>OonO~]" .F .  
~-.1? 
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Proof: We use the Serrin's construction. Let p be a positive constant, and define 

a function 
- 2 p t - t  2 0 < t < p / 2 ,  

3oS t >_ p, h(t) 

such that  h E C~[O, oc), p2 < h < 3p 2, Ih'I < 4p and Ih"I _< 8. Set 

~t(x) = u(x)  + eh(d(x)  ), 

where d: ~t --+ R is the distance function from 0~.  The function h(d(x) )  is a 

smooth function of x for a sufficiently small p. Therefore, ~(x) > ep2 > 0 in 

\ F, and fi(x) E C2(~) M C I ( ~  \ F). Moreover, 

P h  = - a i j O i ( d ) O j ( d ) h "  + b~Oi(d) - a i jO iOj (d  h'  + ch.  
i , j=l  i=1 j = l  

By our assumption, { a # ( x ) }  is a continuous and positive definite matr ix  in ~t. 

Therefore, there exist positive numbers A0 _< A such that  

_ A 2 (2.5) A0 < < 
i----1 i , j = l  

for all x E ~ and ~ E R n . It  follows that  

Pfi >_ P u  + s[2A0 - A(3p 2 + 3p)] 

P~t >_ P u  - e[SA + A(3p 2 + 4p)] 

P~t > P u  - eAIh I >_ P u  - ~Ap 2 

i=1 

for d < p/2,  

for p/2 <_ d < p, 

for d > p, 

where A is a positive constant depending on the maximum of O~Oj (d) in 0 < d < p 

and on the bounds of the coefficients in gt. Furthermore, 

B ~  = B u  + ~ ['yh + ~h' 
Od] 
-~u] >- B u  + e[37p 2 + 2flpff. fi] on 0~t \ F. 

It  follows that  for p and r small enough, 

inf f i > 0 ,  P ~ > 0 i n g t ,  a n d B f i > 0 o n 0 ~ \ F .  I 

R e m a r k  2.4: Let us assume in addition to the hypotheses of Lemma 2.3 that  

u E C(~t). Then there exists a function fi(x) C C2(~t) N C1((~ \ F) M C((~) that  

satisfies ~ > 0 in ~, P ~  > 0 in ~2, and Bfi > 0 on 0 ~  \ F. 
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3. Loca l  so lvabi l i ty  

In this section, we prove the local  so lvabi l i ty  property which is the key for the 

construction of the Perron solution of our mixed boundary value problem. 

Definition 3.1 (Local solvability): The boundary value problem 

(3.1) P u =  f inf t ,  B u = g o n O f t \ P  

is local ly  solvable  if for each y E f t  \ F, there is a relatively open subset N = 

N(y) of (~ \ F containing y such that for any h E C(2V) there is a (unique) 

solution v E C2(N) M C(2V) of the mixed boundary value problem 

(3.2) P v = f i n N N f t ,  B v = g o n N M O f t ,  and v = h o n 0 ' N ,  

where O'N = ON n ft. We denote this function v by (h)y to emphasize its 

dependence on h and y. 

To establish the local solvability of (3.1), we first prove the solvability of (3.2) 

for N and ft of a special form. For 0 < R < 1, set 

Xo = ( 0  . . . . .  0, -R),  
(3.3) On -- {x e R~: I x - xoI < 1}, 

r~. = {x  e ~ :  Ix - x01 < 1}. 

First, we derive some a priori bounds on solutions of mixed boundary value 

problems in DR. These a priori bounds and their proofs are similar to Lemma 3 

in [14], but here we do not assume that c > 0. These bounds, in conjunction with 

the solvability of a particular boundary value and an approximation argument, 

will be used to obtain the local solvability. 

LEMMA 3.2: Let P and B be operators of the forms (1.1) and (1.6) which are 

defined on DR and ER, respectively. Suppose that 

(3.4) ~ aij(x)(i(j _>l~l 2 for all x E DR, { �9 R n, 
i , j = l  

n 

(3.5) Z ~ ( x ) n ~ ( x )  >1 for ~11 x �9 ~R. 
i----1 

Let m and M be positive constants with m < 1 and M > 1, such that 

n 

(3.6) ICl0;DR + ~ (Ibi[o;D. + I~il0;~R) < M, 
i = 1  
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{ vr$ M 2M } 
l > n > m a x  -~ , / l _ m + M 2 , ~ , ( V ~ + l - m )  . 

I f  u E C2(Dn U En)  N C(DR) is a solution of 

(3.8) Pu = f in Dn,  Bu  = g on En, u = O o n O D n \ E n ,  

then 
(S-m) ( l - m ) ,  

supel-mlul  -< K(lflO;DR + ]glo;En ) '  
DR 

where d is the distance function to ODR \ ER, and K is a positive constant which 

depends only on m. 

Proof: Set y =  ( y , , . . . , y n ) - - - - X - - X 0 ,  r = lYl, wn(x)  = ( l - - r 2 )  m. Note  tha t  

d(x) = dist(x,  ODn \ En)  = 1 - r .  One can check tha t  

~ P w n  >_ m 1 4 - - - ~ d ( m - 2 )  in Dn, 
(3.9) [ B w  R > m M  .~(m-1)  

_ (1+4M2)1 /2  ~ o n  En- 

Set 

v+ = •  - K([f[(o 2-m) + IgI(1-'~))wR, 

where K = m a x { 4 / m ( 1  - m), vf5/m}.  From (3.9) we infer tha t  

Pv+ <_ + f  - d~-2i f l~  2-'~) <_ O, in Dn, 

By+ _< •  - d "~-~ Igl(o ~-m> <_ O, on ~R, 

v+ = +u - K(]f[(o 2-m) + [gl(ol-m))WR = 0 on ODR \ ER. 

Note tha t  for R > R' which satisfies (3.7), wR, E ST-~p(DR), and since wn, > 0 

on ODn \ En, we obta in  

lira inf v+ = 0 .  
X-'+ODR \ ER W R '  

Hence, by the generalized m a x i m u m  principle (Theorem 2.1), v+ < 0 in DR. 

Since wn(x)  = (1 + r)md m <_ 2d m, it follows tha t  

lul~ -m _< 2K(Iff(o :-m) + Igl(o'-~)). m 
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Remark 3.3: In fact, we have shown that  there exists w C ST-Ip, B(DFt) which is 

strictly positive in DR provided that 1 - R > 0 is sufficiently small. We note that 

for the Dirichlet boundary value problem, if ~ is a domain which is contained in 

a "narrow" strip and P is a uniformly elliptic operator with bounded coefficients, 

then ST-lp(~) # 0 (see [4]). 

The next step is to show that (3,8) is solvable in DR under hypotheses similar 

to those of Lemma 3.2. 

LEMMA 3.4: Let us assume in addition to the hypotheses of Lemma 3.2 that 

O < a < l and that 

(3.10) [aijla;OR + Ibila;DR + IcI~;DR + I~ll,a;~R + ITII,a;ER <- M1. 

Then t'or every f E C~'(2-m)(DR) and g C C l ' ~ ' ( 1 - m ) ( E n ) ,  the boundary  value 

problem (3.8) has a unique solution u E C2'~'(-'~)(DR). Moreover, 

(3.11) (-m) C(chm, (2-m) u 2,,;DR <-- M,M' ,R,n)( I f I ,~;Dn + Igl~l,2;~)) �9 

Proof." First, we show that  any solution u E C2"~'(-m)(Dn) of (3.8) obeys 

(3.11). Let u be a C :'~'(-m) solution of (3.8). By the monotonicity properties of 
the weighted Hhlder norms [9, Lemma 2.1], 

lul~ ~ ___ lul~?m ~) < Clul~?2 ), 

so u E C2(Dn U En)  N C( / )R) .  I t  follows from the up to the bounda ry  weighted 

Schauder es t imate  [14, L e m m a  1] with b = - m  > - 2  - a ,  t ha t  

U (-m) < e l (sup Ij-m~l + t f l~y~ ) + IgI~IL~)). 
2 , r ~ ; D R  - -  , , , 

D R  

Now, with the aid of Lemma 3.2, we have 

( 2 - - m )  ~ [ ( 1 - - m )  )e ( 2 - - m )  ( l - - m )  , 
o ,(-m) < C(IfIo;DR + z,o;sa + IJla-DR -t- 1911 (~'En)' a [ 2 , a ; D  R - -  , , , 

which implies that 

( Z - m )  
u ~,,:,;oR(-") - < c ( I : l , , ;~ .  + Igl~'2.~).,, 

As in [14], in order to obtain the solvability of (3.8), we apply the method of 
continuity. Consider the Banach space 

B = {u E C2'~'(-m)(DR)I u = 0 on ODn \ En}, 
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the normed linear space 

3; = C~'(2-'~)(DR) x C"~'(1- '~)(ER), 

with the norm 
~e (2--m) (l--m) 

[(/,g)]• = J ~;D, + Igh,~;~,, 

and the bounded linear operators To and T1 from B to N" given by 

Tou= ( - A u , - O n U )  and T l u =  (Pu, Bu).  

We need to prove that T1 is surjective. By [14], To is surjective. Define 

T~ = (1 - r)To + TT1, Tr = (P~u, B~u), for 0 < v < 1. 

We infer that  T1 is surjective if for every 0 < r < 1, 

(3.12) lul• < CIT, u l z .  

Clearly, P~ and By satisfy the assumptions of the present lemma (Lemma 3.4). 

Hence, by the first part of the proof, (3.11) is satisfied with a constant C which 

is independent on r .  But this means exactly (3.12). | 

Next, we prove the solvability of mixed boundary value problems in DR with 

nonzero Dirichlet boundary values on ODR \ P.R. 

LEMMA 3.5: Suppose that the operators P and B satisfy all the assumptions of 

Lemma 3.4. Then the problem 

(3.13) Pu  = f in DR, Bu  = g on Y~R, u = h on ODR \ ~R 

has a unique solution u E C(DR) N C2(DR U ~R) for every f E Ca(DR),  g E 

CI,a(ER) and h e C(ODR \ ER). 

Proof: By Remark 3.3, there exists w 6 ST-Lp(DR) A C(DR) which is strictly 

positive in DR. 

Let {hk} be a C3(/)R) sequence of function which converges to h uniformly on 

ODR \ ~u.  Let vk be the solution of 

Pvk = f - Phk in DR, Bvk = g - Bhk on ZR, vk = O on ODR \ ER 

(this problem is solvable by Lemma 3.4). Set uk = Vk + hk. Since 

P(uk - ut) = 0 in DR, 

B(uk -- ul) = O o n 2 ~ ,  

uk -- ut = hk -- ht on ODR ". ER, 
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the maximum principle for the operator P~u  = w - l P ( w u )  implies that  

sup < sup . 
DR ODR 

Suppose that  the supremum of the right hand side is positive, and assume that  ei- 

ther a positive maximum point or a negative minimum point of ~ is achieved 

on NR- By Hopf's lemma for the operator PO w := pw _ c ~ and the function 
u k --u| , we have B~(U w - ~ )  # O, and this is a contradiction. Hence 

Uk -- Ul <_ hk -- hi , 

W 0;DR W O;ODR \ EFt 

thus 

and the sequence 

Therefore, luklo < C, and Lemma 1 in [14] implies that 

_ g ( 1 )  uk 2,.(~ < C(sup Id~ + I/l(~ 2) + , , . .  
DR 

So the C ~''~'(~ norms of the uk are uniformly bounded. 

C(DR) M C2(DR U ER) is a solution of (3.13). I 

max [w[ 
lUk - U~I0;DR <_ m~nLwl lhk - h~iO;ODR'- ~R, 

{Uk} converges uniformly to a continuous limit function u. 

It follows that u E 

Finally, we prove the local solvability of (3.1) for a general domain. 

LEMMA 3.6: Let P and B be operators of the forms (1.1) and (1.2) satisfying 

(1.3)-(1.5), and let f E C~((~ \ F) and g E Cl'~(Of~ \ F). Then (3.1) is locally 

solvable. 

Proof: For y E 12, take ~ > 0 sufficiently small such that N = N(y)  = B~(y) CC 

il, and such that  there exists u E C 2 (N) such that u > 0 in f" and P u  > 0 in N. 

Note that  the existence of a positive supersolution u in a small ball N follows 

from Remark 3.3. 

Now, since ON = O'N, and (3.2) is the Dirichlet problem, its unique solvability 

for any h E C(ON) is well-known. We remark that the existence of a positive 

supersolution in the relatively compact subdomain N substitutes for the usual 

assumption c >_ 0. 

Let y E 011 \ F. Using Lemma 3.5, the proof of the local solvability for y E 

0il  \ F is achieved exactly as in [14, Lemma 6] by straightening the boundary, 

and taking a sufficiently small domain Dn of the form (3.3). I 
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4. T h e  P e r r o n  p rocess  for t h e  d e g e n e r a t e  p r o b l e m  

The Perron process, usually reserved for the Dirichlet problem, has been used in 

[14] to prove the solvability of a regular mixed boundary value problem. We use 

here a modification of this process to establish the solvability of the degenerate 

problem (1.7) in the class of nonnegative functions. As mentioned, the main 

ingredient of the Perron method is the local solvability which was proved in 

Lemma 3.6. 

THEOREM 4.1: Let P and B be operators of the forms (1.1) and (1.2) satisfying 

(1.3) (1.5). Let f �9 C~(f~) and g �9 C~'~(Ot2 \ F) be nonnegative functions such 

that f and g are not both (identically) equal to zero. Assume further that there 
exists a positive function v �9 C2(f~) U C I ( ~  \ F) satisfying 

(4.1) { 

Then there exists a unique 

the problem 

Pv  >_ 0 in ~, 
Pv  >_ 50 > O in supp(/) ,  
Bv  > 0 on 0~2 \ F. 

minimal positive solution u �9 C2(f2) M C1(~ \ F) of 

(4.2) P u = f  inf~, B u = g o n O l 2 \ F .  

That is, u > 0 satisfies (4.2), and i fw  E C2(12) MCI(~ \ F) is a positive solution 

of (4.2), then u < w. 

Proof'. The case where 0f~ \ F -- 0 is the generalized Dirichlet boundary value 
problem, and it is known that the existence of a positive supersolution which is 

not a solution is a sufficient condition for the solvability of this boundary value 

problem (see for example [25, Theorem 4.3.8]). 
Suppose that O f / \  F ~ 0. By Lemma 3.6, the problem (4.2) is locally solvable. 

Let {N(y)}uc~..  r be the corresponding system of neighborhoods. A P e r r o n  

s u b ( s u p e r ) s o l u t i o n  of (4.2) is a function w C C(~  \ F), such that 

l imsupW<0'~  . . . .  v - limsupW<0x~ v - ( l im i n fw>0 '~  v - liminfW>0)~n v - 
x - + F  :c--+ o o  x - - ~ F  :e--+ o o  

and for any y C f i \  F, and any h �9 C(JV(y)), if h > w (h _< w) on O'N(y), 

then (h)y >_ w ((h)y < w) in N(y)  (see Definition 3.1). The set of all Perron 

subsolutions (supersolutions) of (4.2) is denoted by S -  (S+). 
Let w �9 C(~  \ F); define ~ -- ~y the lift of w with respect to y, as 

(w)v(x) i fx  �9 Y(y),  
~(x)  = ~y(x)  = w(x)  otherwise. 
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We now prove the following properties (1) (5): 

(1) If wl, w2 are in S - ,  then max{wx,w2} C S - .  This property follows 

immediately from the definition of a Perron subsolution. 

(2) Take w C S - ,  y E ~ \ F  and N = N(y)  C ~ \ F .  Then z~ = ~y E S - .  

< 0, and limsupx_+~ ~- < 0. Clearly, zb is continuous in (~ \ F, limsupx_~r v - 

Take yl E ( ~ \ F  and N1 = N(ya). Let h be a function in C(N1), such that  

_< h on O'N1; we claim that  ~ < (h)u ~ in N1. 

Since w C S - ,  we see that  w < (W)y = ,~ in N,  and as ~ = w in ~ \ N ,  

it follows that  w < ff~, in ~ \ P .  Set N2 = N M N 1  and Na = N l \ N 2 ;  thus 

N1 = N2 0 N3. 

We have w < ~ < h on O~N1 and w C S - ,  hence w _< (h)u ~ in N1 and therefore 

ff~ = w <_ (h)w in N3. In particular, @ _< (h)w on O'N2 n fi'3- Furthermore, we 

have ~ _< h = (h)w on (O'N2 N N) C O'N1. Therefore, 

PffJ= P(h)y, = f inN2,  

Bff~ = B(h)y 1 = g o n N 2 M 0 f t ,  

ff~ < (h)y 1 on O'N2, 

and by the generalized maximum principle (Theorem 2.1), ~ < (h)~ in N2. Thus 

< (h)yl in N1 = N2 U N3. 

(3a) Let N be a neighborhood of the local solvability. If w + E C 2 (NM~t)MC(N) 

satisfy 

Pw + = P w -  i n N A f t ,  Bw + = B w -  o n N M ( 0 ~ \ F ) ,  w + _ > w -  o n 0 ' N ,  

then either w + = w -  in N, or else w + > w -  in N. This property follows from 

the generalized maximum principle (Theorem 2.1). 

(3b) I f w  + E S  + , t h e n w  + _ > w - i n ~ .  Set 

( W -  
i n  = s u p  - 

y e n  

We need to prove that  m _< O. Suppose that  m > O, Define 

Let ~ C F O {ec}; then 

(4.3) lira sup ( w _ ~ ( y ) w  + ) w -  w + y ~  - -~ - (y )  <_ l imsup (y) - l i m i n f - - ( y )  _< 0. 
y...~ V y--+~ V 
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Hence, for some R > 0, the set $ is contained in the compact set ~R := 12 M BR, 

and S M OBR = O. Consequently, there exists a sequence of {Yk} E ~ R  such 
that w- w + -v-(Yk) -- --~-(Yk) -+ m. Take a subsequence {Yk,} which converges to Yo. 

It follows from (4.3) that Yo • F. Hence Yo E ~n  \ ( F  U OBR), and from the 

continuity of w • and v in ~R \ ( F  U OBR), 

Yo)-  v (Yo m. 

Thus, S C ~n  \ ( F  U OBn) is a nonempty closed set. 

We claim that S f3 (0~ \ F) # O. Otherwise, there is a closest point Yl in S to 

0~n.  Since Yl E ~, then N1 = N ( y l )  C 12, and O'N1 = ON1. Let @• be the lifts 

of w • in N1. Define p v w  = p(vw). Now c v > 0, and V 

( 1( p v  w 
v v = P ( ~ - ) - P ( ~ + ) ) = 0  inN1,  

~ -  ~+ w-  - w + 
- _< m on i)N1. 

V V V 

According to the weak maximum principle, 

~ -  _ r  
sup 
N1 V 

W -  -- W + ) 
< sup < m, 
-- cqN1 V + - -  

and the strong maximum principle implies that either ~-  ~+ < m in N1, or v v 
~-  ~+ -- m in N1. Since w + is a Perron super(sub)solution, and ~•  = w • on v v 
ON1, then 

W + 
( 7  ' t 0~ )  (y l )  -~ ( 7  V )(Yl)- - - -  m .  

It follows that ~-  ~+ - m in NI and hence v v 

w-  w + ~ -  ~+ 

V V V V 
- -  - m o n  ON1, 

which contains points of S closer to 0 ~ n  than Yl, contradicting the definition of 

Yl. 

Let Yl E S M 0 n  \ F, and let ~•  be the lifts of w • in N1 -- N(yl)  C ~ "-F. 

Define 

Bv Ow 
PVw = P~w -4- cVw - P ( v w )  and B~w -= - - w  -4- 

V V (~1]" 



Vol. 132,  2002  P O S I T I V I T Y  O F  S O L U T I O N S  141 

Now c ~, fl~ are nonnegative,  and 7 ~ > 0. Since 

P~ w- w+~ = 0  i n N 1 ,  
v v /  

B v ~ -  ~ : )  = 0  on ON1NO~, 

/ 

v v /  

ff~- if;+ 
_< m on OIN1, 

v v 

by the s t rong m a x i m u m  principle and the Hopf  l e m m a  for the opera to r  P~, 

~ -  ~ +  ~ -  ~ +  
either - -  < m ,  or - - - m  i n N 1 .  

V V V V 

From 

Yl) ~ Yl) = m, 
v v 

it follows tha t  ~ -  ~+ v v - m in/V1. But  then 

Bv ( ~ -  - '~+ ) Bv  = 7 ~ m = - - m > 0  o n 0 N 1 M O R ,  
v v 

and this is a contradict ion.  Consequently m _< 0, so w -  _< w + in ~.  

(4) S • are not  empty.  Clearly 0 E S - ,  and  kv E S + for k satisfying 

k > max{Iglo/r  , Iflo/5o}, where r = min{Bv(x) l  x �9 supp(g)}.  

(5) Let  N be a relat ively open subset  of ~2 \ F, and let {uk} be a bounded 

sequence of C2(N) M C ( N )  solutions of 

Pu  k -- f in N N ~, Buk = g on N M 0n .  

Then  there is a subsequence {uk, } converging to a solution u of  

Pu  = f in N N ~ and Bu  = g on N N O~. 

The  desired p roper ty  follows direct ly from the up to the boundary  weighted 

Schauder es t imate  [14, L e m m a  1] and the Arzel~-Ascoli  theorem.  

We now define 

u = s u p { w l  w �9 5 ' - } ,  

and prove tha t  u is a C 2 ( ~  \ F) solution of (4.2). By (4), S + are not empty.  Take 

w + E S +. Let  K be a compac t  set in ~ \ F. According to (3b), for every w C S -  

we have w < w + in ~ ,  and hence in/~ ' .  Therefore,  {w I w E S - }  is a nonempty  

bounded  from above set in every compac t  set K ,  and u = sup{w I w E S - }  is well 

defined. Set y e ~ \ P and let {Wk} C S -  be a sequence such tha t  wk(y) -+ u(y). 
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By replacing wk with ~k = max{wk, Wl} and using property (1), we obtain a 

locally bounded sequence of Perron subsolutions. Property (2) implies that  the 

sequence {wk} of the lifts of Wk with respect to y is contained in S - .  Moreover, 

wk are locally uniformly bounded in ft, and wl _< ~k -< ~k -< w +. In view of 

property (5), {~k} has a subsequence {~k~ } which converges in N = N(y)  to a 

function ~ C C2(N) that  satisfies 

P ~ = f i n N M f t  and B ~ - - g o n N M 0 f t .  

We have ~k~ _< u in N, thus ~ _< u in N. Note that  ~(y)  = u(y) (as wk(y) <_ 

ff~k(Y) <-- u(y), and wk(y) -+ u(y)). We claim that  ~ = u in N. Suppose that  for 

some z E N,  ~(z)  < u(z); then there exists w0 E S -  such that  ~(z)  < wo(z) ~ 

u(z). By replacing ~k with Wk = max{~k,  w0}, and taking the lifts and then a 

converging subsequence, we obtain a solution ~ C C2(N) of 

P ~ = f i n N n f t  and B @ = g o n N M 0 f t .  

From our construction of ~,  ~ _< ~ in N and, in particular, on O'N, hence (3a) 

implies that  either ~ < ~, or ~ = ~ in N. Since wk C S - ,  we have wk _< u and 

therefore ~(y)  = u(y) >_ Fv(y). Consequently, ~ = ~ in N,  which contradicts 

@(z) < wo(z) <_ ~(z) .  Thus, ~ = u in N. Since y is an arbitrary point of ~ \ F, 

it follows that  u is a C2(~ \ F) solution of 

Pu = f in fl and Bu = g on Oft \ r .  

Recall that  0 C S - ,  so u _> 0. Since by our assumptions either Bu = g ~ 0 on 

Oft \ F, or Pu = f ~ 0 in ft, we conclude that  u > 0 in ~t \ F. 

Now, let w E C2(f~) M Cl(~t \ F) be a positive solution of (4.2). Clearly, 

w E S +, hence u < w and u is the minimal positive solution of (4.2). I 

Definition 4.2: The solution, which was obtained in Theorem 4.1, is said to be 

a P e r r o n  so lu t i on  of problem (4.2). 

From the minimality of the Perron solution we obtain 

COROLLARY 4.3: The Perron solution of problem (4.2) depends neither on the 

positive supersolution v C S ~ p ( f t ) ,  nor on the system of neighborhoods 

{N(y)}ye(~-.r.  

We can use the Perron method to obtain a positive solution for the following 

exterior degenerate mixed boundary value problem: 
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THEOREM 4.4: Suppose that P and B are operators of the forms (1.1) and 

(1.2) satisfying (1.3)-(1.5). Let K be a nonempty compact set in f~ with a 

smooth boundary, and let g �9 C(OK) be a positive function. Assume also that 

STtp(~)  ~ O. Then there exists a positive Perron solution 

�9 c2(  \ ( K  u r)) n \ K) \ F) 

of the problem 

(4.4) P u  = O in ~ \ K, Bu  = O on Oft \ F, u = g on OK. 

Moreover, u is the minimal positive solution of this problem, namely, if  w is a 

positive (classical) solution of (4.4), then u <_ w. In particular, u depends neither 

on the supersolution v, nor  on the system of the neighborhoods. 

Proof: Note tha t  a l though on OK we impose the Dirichlet boundary  condition, 

we do not consider OK as par t  of the singular set F, since it is a disjoint smoo th  

componen t  of the boundary.  

First ,  we prove the solvability of p rob lem (4.4) under  the s t ronger  assumpt ion  

t ha t  there  exists v E S ~ p ( ~ )  such tha t  By > 0 on 0 ~  \ F. 

Set ~ '  = ~ t \ K .  We say tha t  (4.4) is l o c a l l y  s o l v a b l e  if for each 

y c f~' U (0f~ \ F), there is a relat ively open subset  N = N(y)  of f~' U (0f~ \ F) 

with y E N and /V N (F U OK) = 0, such tha t  for every h E C ( N )  there is a 

unique solution (h)y E C2(N) N C(f I )  of 

(4.5) Pu  = 0 in N N f~, Bu  = 0 on N N 0f~, and u -- h on O'N, 

where O'N = ON N f~l. A P e r r o n  s u b s o l u t i o n  of (4.4) is w E C( f t  I \ F )  

satisfying 
w w 

lim sup - -  <_ 0, l i m s u p - -  _< 0, w < g o n 0 K ,  
x-~F V x-~oo V 

and for each y E f~' U (0f~ \ F), if w _< h on O'N(y), then  w < (h)y in N(y) .  A 

P e r r o n  s u p e r s o l u t i o n  is defined similarly. The  set of all Perron subsolutions 

(supersolutions) of (4.4) is denoted by S - ( f t ' )  (S+(f ' t ' ) ) .  

As in Theo rem 4.1, one can prove tha t  

u(x) : sup{w-(x) l  w -  �9 

is a C 2 ( ~  \ ( K  U F)) solution of (4.4). Note tha t  for every y �9 OK and w • �9 

S=~(~t ')  we have 
( _ ~ ( y )  _ w+ _ 
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Furthermore, since OK is smooth, by a standard local barrier argument, u satisfies 

the boundary condition on OK. 

Suppose now that B v  >_ 0 on 0~  \ F; we use the first part of the proof and 

solve the sequence of problems: 

(4.6) Puk = 0 in ~ \ K,  (B + 1/k)uk = 0 on 0 n " -  F, uk = g on OK. 

Since Cv >_ g on OK for some C > 0, the sequence {uk} satisfies 0 < uk < Cv. 

Hence, (uk} has a subsequence converging to a solution u of (4.4). Note that the 

condition u = g > 0 on OK implies that  u is positive on f~ \ K.  

It remains to prove the minimality of u. If w is a nonnegative solution of (4.4), 

then w E S + of problem (4.6). Hence, Uk <_ W and therefore u _< w. I 

PROPOSITION 4.5: 1. Let N be an open set in ~, y E 1~ M F, v E S~t~p, and u 

be the Perron-solution of  (4.2) or (4.4). Then 

lira v(x) = O ~ lim u(x) = O. 
x- -+y  x - - ~ y  

xE/9"- F xE/V'- F 

2. Suppose further that v E C(]V), and v(y) = 0 for every y E J~ VI F. Then 

E C(N),  where 
= S x �9 a \ r ,  ~(x) [ O, x �9 ; V n F .  

Proof'. 1. Take w �9 S - .  For k sufficiently large, kv �9 S +, hence w(x)  < kv(x)  

in/~" \ F. Recall that 0 �9 S - .  Therefore, 

O < _ u ( x ) = s u p { w ( x ) ] w � 9  S - } _ k v ( x )  i n N \ F .  

Since lim v(x) = 0, it follows that lim u (x ) - -  0. 
x- -+y  x - - ~ y  

xEN \ F xEfI \ F 

2. Let y �9 /~ 'AF,  and take xn -+ y. If {xn} C 2 V \ F ,  then by part 1, 

limx~-~u fi(x) = limx~_~uu(x) = 0. On the other hand, if x~ �9 N M F, then 

~(x~) = 0, and limz~-~u ~(x) = 0. Thus, ~ is continuous in N. I 

5. The generalized pr inc ipa l  e igenva lue  

The aim of this section is to generalize the notion of the (classical) principal 

eigenvalue to our problem, and to study its properties. To this end, we prove 

that  the sets S = {t I ~-~pt (~'~) r 0} and {t] S~t~pt(~) r 0} are equal by showing 

that the existence of a positive supersolution implies the existence of a positive 

solution of the homogeneous degenerate mixed boundary value problem. 
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Let Pt = P - tW ,  t �9 R. The genera l ized  pr inc ipa l  eigen- 

and 

{tl ~t~ # O} c {tl s~to,(~t) # O} c_ {tl SUp, fit) r 0}. 

Therefore, it suffices to prove that 

{tl s~p , (a )  r ~} c {tl ~t~ # o}. 

Suppose that $7-/p~(ft) r 0. Take {Pk} a sequence of points in gt which 

converges either to p �9 F (if F r 0), or to infinity (if ft is unbounded). Set 

ek = min{1/k, �89 dist(pk, 0ft)}, and Bk = B~ k (Pk). 

By Theorem 4.4, there exists wk �9 C2(ft) A C1(~ \ F) that  satisfies 

(5.2) Wk > 0, Ptwk = 0 in gt \ Bk, Bwk = 0 on O~ \ F, Wk = 1 on OBk. 

Fix xl �9 f~ \ Uk~__l Bk and define Vk(X) = Wk(X)/Wk(Xl). Using the local Harnack 
inequality and the interior Schauder estimate, we infer that 

Ivkl2,~;K' < Clvklo;1( = C M K ,  

for every K '  C C K C C ~. 

Let K be a compact set in ~ \ F such that K ~ ft ~ 0. Recall that Bvk = 0 

on K N 0f/. By the local and up to the boundary Harnack inequalities [3], and 

is defined by 

(5.1) A0 = Ao(ft, P , W , B ) : =  sup{t E R] ?-/p,(~) r 0}, 

where "~'~p is defined by (1.8). 

THEOREM 5.2: Let P and B be operators of the forms (1.1) and (1.2) satisfying 

(1.3)-(1.5). I f f l  is bounded, suppose further that F r 0. Let STiFflY), S3 l~  

7tp(f~), and 7-l~ be the sets as defined in Definition 1.2. Then 

{t �9 RI s~tp,(~) # 0} = {t �9 RI ~t., (~) # 0} = 

{t �9 RI s n  ~ (a) r O} = {t �9 RI n ~ (a) r o}. 
Proof  It is obvious that  

{tl n ~ (a) # O} c_ {tl rip, (~) r O} c_ {tl 8 n p ,  (ft) r 0}, 

Ptu = f in ~ and Bu = g on Of~ \ F 
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the up to the boundary weighted Schauder estimates [14, Lemma 1], there exists 

a positive constant NK such that  for every k large enough, 

iv k (o) < CIVkIo;K < CNK.  2 , a ; K  - -  

Using the Arzels theorem for {vk} and its derivatives up to order 2, and 

by applying the diagonal method, we may extract a subsequence which converges 

in every relatively compact subdomain of ~ \ F to a function v0 which satisfies 

v o > 0 i n f l ,  Pevo = O in ~2, and Bvo = O on Of~ \ P. 

Therefore, Vo C H ~  (~). Thus, {tl 8np, (~) # O} c_ {tl ~o  (~) # 0}. m 

Remark 5.3: Under some assumptions, the solution vo E 7/~ that  was con- 

structed in Theorem 5.2 satisfies the homogeneous Dirichlet boundary condition 

on Lipschitz portions of F. More precisely, let N be an open set in f~, such that  
M 0f~ _C F \{p},  where p is the boundary point in the proof of Theorem 5.2. 

Suppose that F (3 N is a Lipschitz portion of Of~. Take Uo E S~L~pt and suppose 

that  u0 C C(/V), and uo(y) -- 0 for every y �9 F M ~'. Then 0o �9 C(N), where 

fvo x E  f ~ \ F ,  
~0 ,  (x)' x E ~ ' M F .  

0o(X) 

Indeed, let {vk} be the normalized sequence that  converges to Vo in the proof 

of Theorem 5.2. Fix y �9 F M N and let Bs~(y) be a ball contained in N. By 

Proposition 4.5, the extended functions Ok(X) are in C(Bsr(y)  M ~). Recall that  

PtOk = 0 i n  Bsr(y) Ml2 and Ok = 0 o n  Bs~(y) M0~ C_ F. According to the 

boundary Harnack principle [5], there exists C > 0 such that for every k > 1 and 

every x �9 Br(y) (3 ~, 
CVl(x)v~(xo) 

v~(x) < Vl(XO) ' 

where xo �9 OB~(y) ;3 f~. The sequence {Vk} is locally uniformly bounded in f~, 

in particular, M -1 < vk(xo) < M.  So vk(x) < Cvl(x)  and 0 < Vo(X) <_ Cvl(x) .  

In view of Proposition 4.5, lira 01(x) = 0, therefore, lim 00(x) = 0. Thus, 00 is x--+y x-+y 
�9 E~" z E N  

continuous in N. 

PROPOSITION 5.4: Let ~ be a smooth bounded domain and F = 0 (the regular 

oblique derivative problem). Then 

{tl ~e,(g*) # 0} = {tI ,ST-t~ (~) # 0} = (tl 5'~p, (~) # 0}. 
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Proof: Clearly, 

{tl s?-t~ (~t) r O} c {t[ SHpt(~t) ~ 0}, 

We need to prove the opposite inclusions. Suppose that there exists 

u E $7-/gt \ 8 7 / 0 .  We assert that S7-/~ r 0. By the generalized maximum prin- 

ciple (see Remark 2.2) and Hopf's Lemma, u > 0 on ~, therefore, for k = 1, 2 , . . . ,  

we have 

(Pt + l / k ) u  _> fk > O in gt, (B + l / k ) u  > r > O on O~. 

Take f E C~ (~) such that f ~> 0. According to Theorem 4.1, there exist positive 

solutions wk of the problems 

(Pt + 1/k)wa = f in gt, (t3 + 1/k)wa = 0 on On. 

We distinguish between two cases: 

(a) Suppose that {wk} is not locally uniformly bounded; then there exists 

xo c fl such that  wk(xo) -+ oo. Define wk(x) = wa(x)/wa(xo). By a standard el- 

liptic argument, there exists a subsequence {wa} that  converges to a nonnegative 
function w E C 2 (~t) M C 1 (h) which satisfies 

Ptw = O in fl, Bw = O on OQ. 

Since W(Xo) = 1, it follows that w > 0 in ~ and w E 7 / ~  (12). 

(b) Suppose that {wa} is locally uniformly bounded. It follows from the 

Schauder estimates and the Arzel~-Ascoli theorem that  {wk } has a subsequence 
that converges to a nonnegative function w which satisfies 

Ptw = f ~ O in ~t, Bw  -- O on cOf~. 

By the maximum principle, w > 0 in ~. Thus s h o t  % O. 

Similarly, if u E $~p~ \ HP~, take g E C~'a(Oft), g ~ O, and k __ 1. By solving 

(Pt+ l / k ) v k = O i n ~ ,  ( B +  l / k ) v k = g o n O ~ ,  

and repeating the above argument, we deduce that  7/p, ~ O. Thus, these three 

sets are equal. | 
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Remark 5.5: For the regular oblique derivative problem (and for the Dirichlet 

problem) in a smooth bounded domain, and for W > 0 in ft, we only have 

{t I 7-/~ (~t) r O} C {tl//P~(~) r 0). 

Indeed, by [2, Theorem 4.3], i f W  > 0 in ~, then {tl ~t~ # 0} = {A3}, where A3 is 

the classical principal eigenvalue. Moreover, by [2, Theorem 4.4] and Proposition 

5.4, S = {t[ ST-lp~ r 0} = ( -co,  A~]. 

Remark 5.6: If there exists a constant m E R such that c - m W  > O, then 

Ao(~t, P, W, B) > m. Clearly, the assumption c - m W  > 0 implies that for any 

positive constant k, 

( P - m W ) k = ( c - m W ) k > _ O i n ~  and B k ~ _ O o n O f t \ F .  

By Theorem 5.2 and Proposition 5.4, 7-/p m (f~) r 0. Hence A0 ~ m. 

6. The set S = { t E R [ H p t ( f ~ ) ~ 0 }  

In this section we show that the set 

(6.1) S -- S ( f ~ , P , W , B )  -- {t E R I Hp,(f~) ~ 0} 

is a closed convex set. First, we need two auxiliary lemmas: 

LEMMA 6.1: I f  S ~ p  ~ O, then for each x0 E ~ there exists a positive function 

w E C2(~ \{Xo}) M C1(~ \({xo} U F)) such that 

P w = O i n f ~ \ { X o } ,  B w = O o n O f ~ " . F .  

In other words, w 6 7.{o(~ \{Xo}). 

Proof." Suppose that ST~p # 0. Take Xo 6 ft. For 0 < x < e0, let B~ be a ball 
centered at Xo such that B~ CC ft. By Theorem 4.4, for each 0 < ~ < ~o, there 

exists a positive minimal solution u~ of the boundary value problem 

Pu  = O in Q \ B~, Bu  = O on Of~ \ F, u = l o n 0 B ~ .  

Take Xl 6 ~ \ B~ o and define w~(x) = ue(x)/u~(xl) .  Using the local and up to 

the boundary Harnack inequalities, we infer that we are uniformly bounded in 

compacts of ~ \ ( F  U {xo}), and by a standard elliptic argument (as in Theorem 

5.2), there exists a subsequence, denoted by {w~ k }, that converges as ~k -+ 0 to 

w which is a positive solution of 

P w = O i n ~ \ { x o } ,  B w = O o n O f t \ F .  I 
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LEMMA 6.2: Suppose that there exists a positive function w �9 H~ f~ \{x0})  for 

some xo �9 f~. Then 7-lp(ft) # 0 and 

( 6 . 2 )  = 

where a is a nonnegative constant, GO(., x0) is the minimal (Dirichlet) positive 

Green function of the operator P in ~ with a pole at Xo, and ~ �9 ~lp(f~) t2 {0}. 

Moreover, if  a = O, then ~ �9 H~ and if  a > 0 and O~ \ F # 9, then ~ �9 

Hp(f t )  \ H~(~) .  The case in which ~ = 0 may occur only for the (generalized) 

Dirichlet boundary value problem (Of~ = F). 

Proof: If limsupx__,x o w(x) < e~, then using [10], w has a removable singularity 

at x0, and we obtain (6.2), with a = 0 and with @ which is the continuous 

extension of w. In this case @ �9 ?/o(f t) .  

Otherwise, take an increasing sequence {ftk}k~__l of smooth bounded domains 
CX5 

that  exhausts ft such that  ftk CC ftk+l CC ~, and ft = [-Jk=~ Vie. It  follows 

from [24] that  

where ae  > 0, GOb (x, xo) is the positive minimal Green function of the Dirichlet 

boundary value problem in fte, and we > 0 satisfies Pwk = 0 in f k ,  and wk = w 

on Oftk. Hence, for a subsequence kn --+ cx~, we have 

w = a G D ( . , X o ) + ~  i n f ' ,  

where a is a positive constant and ~ _> 0 satisfies P ~  = 0 in ft. 

Obviously, if Oft = F (the generalized Dirichlet problem), then either ~ = 0, 

or ~ E 7-/p(ft) = H~  Note that  in both  these cases qr~p • 9, since for the 

generalized Dirichlet problem, it is well known that  the existence of the positive 

minimal Green function G~  implies that  Hp # O. 

Suppose now that  0f] \ F  # 9. Then GO(.,xo ) = 0 on 0f] \ F and, by Hopf 's  

Lemma, BGD( ., Xo) < 0 on 0f~ \ F. On the other hand, 

0 = Bw = aBGD(. ,Xo) + B(v on 0 f ~ \ r .  

Since c~ > 0, it follows that  B@ > 0. Consequently, 

> 0 ,  P ~ = 0 ,  in f t ,  and B ~ > 0  o n 0 f t \ F .  

Thus, ~ C ?-/p \ H~.  II 
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LEMMA 6.3: The set S is a closed interval. 

Proof'. For the case where F : 0R (the generalized Dirichlet problem), this 

result is known (see [23]). Our proof is quite similar and covers also this case. 

CLOSEDNESS: If {tk} is a sequence in S that converges to to, then by Lemma 

6.1, there exists a sequence of normalized positive solutions wk of the problem 

Ptkwk=O inR"-{x0},  Bwk=O on O R \ F .  

By standard elliptic arguments, there exists a subsequence of {wk} that converges 

to a positive solution w of the problem 

Pro w = O  i n ~ \ { x 0 } ,  B w = O  o n 0 R \ F .  

According to Lemma 6.2, 7-/pro (~t) # 0 and S is closed. 

CONVEXITY: Let to, tl  6 S. For any 0 < a < 1 denote by ta the convex 

combination ts = at1 + (1 - a)t0. Let u0 6 7-/pto and Ul E 7-/p~1, and set 

us = (u0) l -S(ul)% We claim that us 6 S~lp t .  Indeed, 

= ( 1  -  )its(it0)-lp oit0 + 

(~t l )2  n (UO)oj (UO) > 0 ,  
(6.3) -~- OL(1 -- Ol)it s ~0 ~ aijOi ~ \ i t l  " -- 

i,j=l 

(6.4) Bus =(1 - a)us(uo)-lBuo + aus(u l ) - lBu l  > O. 

Therefore, us E ST-lp~, (0). By Theorem 5.2 and Proposition 5.4, we deduce that 

7-/pt" (R) # 0, and S is convex. Note that if Pta # Pro, or, more generally, if Uo 

and ul are linearly independent, then us E S~t~p,. (R) \ ~-~Pta (R). I1 

Remark 6.4: Lemma 6.3 can be slightly extended. Let 7-/pt,B~ be the set 

~'~Pt,Bt = {U 6 C2(R) I.J c l ( ~  \ F)[ it > 0 in R, 

Ptu = 0 in R and Btu >_ 0 on 0R \ F}, 

Ou 
where Btu = tTu + ~-5-g~, and define S {t > 01 7-/p,,B, # @}. Then, as in the 

proof of Lemma 6.3, it can be shown that S is a closed interval. 

LEMMA 6.5: 1. I[$7lp • ~ and W ~ O, then S = ( -c r  A0], where 0 < Ao < oo 

is the generalized principal eigenvalue. 
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2. If  ST-lp ~ 0 and W changes its sign in ft, then S is the bounded interval 

[A_, Ao], where .k_ := inf{t E S}, and - c~  < )~_ < 0 < .~o < co. 

Proof 1. Let 

S 0 :----- { t  E R I 3Ut > 0 s . t .  Ptut = 0 in ft} 

be the corresponding set for the generalized Dirichlet problem (P = Oft). 
Obviously, S c_ S ~  It is known that S D is bounded from above (see [21, the- 

orem 4.4]), therefore S is bounded from above. Since 0 C S, it follows that 

0 < A0 = sup S < oo. By Lemma 6.3, S is a closed interval, hence there exists 

"tt 0 E qr~p),o. For every t < ,k0, we have Uo C S ~ ' ~ p  t . According to Theorem 5.2 
and Proposition 5.4, ~/p, ~ 0. Hence S -= ( -oo,  Ao]. 

2. By Lemma 6.3 and our assumptions, S is a closed nonempty interval. Recall 

that S C S ~  In addition, S ~ is a bounded set [21, theorem 4.7]. Therefore, S 

is the closed bounded interval S = [~_, ~o]- I 

7. Basic properties of A0 

With the aid of the preceding section's results, we obtain various properties of the 

generalized principal eigenvalue. In particular, we wish to show that in regular 
problems, the generalized and the classical principal eigenvalue are equal. We 

also show the continuity, convexity and monotonicity of Ao. 

LEMMA 7.1: Let f~ be a C2-bounded domain. Assume that P is uniformly 

elliptic in O, the coefficients of P are in C~(~),  and W E C~((~) is a posi- 

tive function. Suppose that there exists a classical principal eigenvalue fl~ with 

classical principal eigenfunction u~ E C~(Q) N C 1 (Oft \ F) Q C(~)  satisfying 

(7.1) Pu~- -A~Wu~in f~ ,  B u ~ = O o n O f t \ F ,  u ~ = 0 o n F .  

Then A~ = Ao. 

Proof As u~ E 3/p~f, (ft), it follows that A~ _< Ao. Suppose that A~ < A0. Take 

A~ < t <_ Ao and ut C Hp~ (ft). Then ut > 0 satisfies 

P ~ u t  = (t - )~)Wut  > 0 in f~, But >_ 0 on 0f~ \ F. 

By Lemma 2.3, there exists fi C C2(ft)M C1(~ \ F) that satisfies 

i n f , > 0 ,  P x s f i > 0 i n f l ,  B ~ > 0 o n 0 f t \ F .  ~2 
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We use the e - m a x i m a l  m e t h o d .  Denote  r = sup{e > 0[~ - eu~) > 0}, and let 

= 5 - couP). Clearly, 0 < r < oc. I t  follows tha t  

_>0, P ~ f i > 0 i n ~ ,  B~>0on0~'- .F,  

which implies tha t  fi > 0 on (~ \ F. Moreover,  lira infx-~r fi > 0, hence infa  5 > 0. 

By  replacing fi with fi, we have c1 > 0 such tha t  fi - clu~) >_ O, which contradicts  

the max imal i ty  of Co. I 

Next ,  we establish the uniqueness of the Za remba  boundary  value problem. 

LEMMA 7.2: Let  f} be a C2-bounded domain. A s s u m e  that  P is uniformly 

elliptic in ~ and that  the coefficients o f  P are in C~(~ ) .  Suppose that  u E 

C2(f~) M C l ( ~  \ F) satisfies 

(7.2) u > 0 i n f ~ ,  P u  > O in f~, B u  >_ O on OD \ F. 

I f v  E C 2 ( a )  A 61 (~'~ \ F) N C ( ~ )  is a solution o f  

(7.3) P v  = O in fl, B v  = O on Of~ \ F, and v [ r = 0 ,  

then v = O. 

Proof: By L e m m a  2.3, there exists fi E C2(f~) A C 1 ( ~  \ F) which satisfies 

i n f , > 0 ,  Pfi>0inf l ,  Bfi>0onOf~\F. 

Take v tha t  satisfies (7.3). Suppose on the cont rary  tha t  there is a point  x0 E f~ 

such tha t  v(xo) > 0. We use again the e -maximal  method.  Define 

eo = sup{c > 0[~ - cv _> 0 in f~}. 

Clearly, 0 < r < co. Set w = fi - Coy; we have 

w _ 0 i n f l ,  P w  = Pfi  > O in f~, B w  = Bfi  > O on Of~ \ F, 

and lira infx_~r w -- l im i n f , - , r  fi > 0 on F. By the generalized m a x i m u m  prin- 

ciple and Hopf ' s  l emma,  w > 0 on ~ \ F. Hence inf~ w > 0. Therefore,  by 

replacing 5 with w, there is a posit ive r such tha t  w - c l v  _> 0 in f~, which 

contradicts  the definition of Co. Consequently,  v = 0 as required. I 
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Remark 7.3: The assumption that  f~ is bounded is essential for the uniqueness 

(see Theorem 5.2). The requirement that v[r = 0 is also essential even if F is a 

singleton, as shown recently by G. M. Lieberman [16]. 

Under some assumptions, the principal eigenfunction for the degenerate oblique 

boundary problem is unique. First, we need the following: 

LEMMA 7.4: Suppose that  ~ is a C2-bounded domain and let w , v  E C1(~)  
Ow Ov w satisfy w, v > O in ~ \  F, o . , o ~  < 0 ~ 1 7 6  Then v E C(O) 

Ow / Ov ~o is defined as o~ ~ o~" and ~ > 0 in ~ where, on F, -~ 

Proo~ By dividing the Taylor polynomials of the functions w and v, the proof 

is immediate. I 

LEMMA 7.5: Assume  that  ft is a C2'a-bounded domain. Let  P be a uniformly 

elliptic operator in ~ with C ~ (~)  coefficients, and 

Ou 
Bu = 7(x)u  + 9(x)  0--; 

a degenerate oblique boundary  operator defined on Oft with C 1,a (Of~) coefficients 

such that/3, 7 >- O, and/3+7 > O. Let  w, v E C2'~(f~)MCI(~)) be posit ive solutions 

o f  the problem 

P u  = 0 in ft, B u  = 0 on Of~. 

Then w = eoV, where eo is some posit ive constant. 

Proof'. Set F -- {x E 0f~[~(x) = 0}. Clearly, w and v fulfill the requirements 

w w ~. Consequently, there exist of Lemma 7.4, therefore -~ E C(~)  and v > 0 on 

ko, kl such that  0 < ko < ~ < kl < c~ in (]. Using again the e-maximal method, 

we conclude that  w = eoV. I 

Next, we study monotonicity, continuity and concavity properties of Ao as a 

function of the coefficients of P and B, and of the domain ~]. 

LEMMA 7.6: (1) For i = 1, 2, let fti be a domain in N n, Fi a closed subset o f  

Of~i, and Ofti \ Fi a C2'~-portion of  Ofti. A s s u m e  that  

f~lC_ft2, O f h \ F 1 C _ O f ~ 2 \ F 2  and B~]on,..r~ = B1. 

Then Ao 2 < A01, where A/o := A0(ai, P, W, Bi),  i = 1, 2. 
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(2) Suppose that f~ is unbounded. Let {12k}k~__l be an increasing sequence 

of  bounded domains such that Uk=l~ f~k = ~2. Denote O'f~k = Of~k N ~2 and 

Pk = (P A Of~k) U O'f~k. Assume that 

O 0  

k = l  

Let Bk be given boundary operators on O~k \ Fk, and suppose that for k >_ 1, 

Bk+l[Oak-.r~ = Bk. Then Ao k --+ Ao, where A~ = Ao(f~k,P,W, Bk) and Ao = 

P, w, B). 

Proof'. (1) Clearly, HP~,B2 (f~2) C_ 7-/Pt,B1 (121), thus A 2 < A~. 
(2) According to part (1), Ao _< Ao k and {Ao k } is a decreasing sequence. Therefore 

Ao _< A := limk-~oo Ao k- 
First, suppose that A < co. In the light of Theorem 5.2 (note that Fk r q}), for 

each Ao k there exists a normalized solution Uo k E 7/~xok (f~k). The sequence {Uo k} 

contains a subsequence converging to a function Uo C 7-/0 x (f~). It follows that 

_< Ao. Hence Ao = limk--+~ A0 k. 
If A ---- oo, then A ~ = oc for every k _> 1. It follows from Theorem 5.2 that  for 

every A > 0, there exists a normalized function uk,x E 7-/~ ). The sequence 

{uk,h} has a subsequence converging to u~ E 7-/~, x (f~). Since A is an arbitrarily 

large number, it follows that  Ao = oo. | 

Remark 7.7: (1) We note that for the Neumann boundary value problem, A0 is 

not a continuous function of the domain in the usual sense (see [7]). 

(2) If ~t is bounded and F = 0, then in general, the standard monotonicity of 

Ao with respect to the domains does not hold true, as we show in the following 

example (see also [7]). 

Example 7.8: Take ~tl = BI(0), ~t2 = B2(0), P = - A  + V, where Via ~ = 0, 

Via2 "-~1 > 0, and B = b-~" Then Ao(~tl) = 0, but Ao(~t2) > 0. 

LEMMA 7.9: (a) Suppose that Cl <_ c2, 71 <_ 72,/~1 >_ 1~2 and denote 

o . 
Pi = P + ci, Bi = "/i +/~i and M o = Ao(f~, Pi, W, Bi), 

for i = 1, 2. Then A~ >_ A~. 

(b) Ao is a concave function of the coefficient c. 

(c) Let {ck}~=o and co be C~oc(~ \ F) functions such that [Ck[o;a, _ M(~2') for 

every fY CC ~ \ F, and ck(x) --+ Co(X) for all x E ~ \ F. Set Pk = P + ck and 

Ako = Ao(f~,Pk, W ,B) ,  k >_ O. Then limsupk_~oo Ao k _< A ~ 



Vol. 132, 2002 P O S I T I V I T Y  OF  S O L U T I O N S  155 

(d) I f W  > O and 
ck(x) - co(x) 

W(x)  o;~ --+ O, 

then Ako --+ A ~ Moreover, Ao is a Lipschitz continuous function of c with Lipschitz 

constant 1 with respect to the norm I l l f l l l  : =  I-/w-wlo;~ �9 

Proo~ (a) Clearly, 7tpl_~W, Bl(f~ ) C ST-lp2_~W,B~(f~ ). By Theorem 5.2 and 

Proposition 5.4, 7-lp2_~W, B2 -fi O, and consequently A 2 >_ Ao 1. 

(b) For 0 < a < 1, denote 

P ~ = P + a C l + ( 1 - a ) C o  and A ~ = A o ( ~ , P ~ , W , B ) .  

Let ui E HP~-Xgw, where i = 0, 1. Set u~ = (uo)l-a(Ul) a. As shown in Lemma 

6.3, [ P ~ -  ( ~ o 1 + ( 1 - ~ ) ~ ~  > 0 and Bu~ > 0. Hence ~ > ~ 1 + ( 1 - ~ ) ~ o  ~ 

(c) Let A := lira s u p k _ ~  Ao k. By taking a subsequence we may assume that  

Ao k --+ A. We wish to prove that  A < Ao ~ 

Suppose first that  A < co. According to Lemma 6.1, there exists a normal- 
o ized sequence of positive solutions uk E 7-lpk_:,koW(f~ \{Xo}). As ek are locally 

uniformly bounded, by standard elliptic arguments, the sequence {uk} has a 

subsequence converging to ~ C 7-/~o_XW(f~ \{xo}) .  Lemnm 6.2 implies that  

~'[po_~W(~) # O. Hence, A _< A ~ 

If A -- cx~, then for every A > 0 there exists kx such that  ~ v k - ~ w  # 0 for every 

k > k~. It follows as above that  ~lPo_~W (f~) # 0. Inasmuch as A is an arbitrarily 

large number, it follows that  A ~ = ec. 

(d) If [ ; ~ [ o ; a  --+ O and W > 0, then for every 0 < e < 1 there exists k~ such 

that  for every k~ < k E N, 

co - cW _< ck _< co +~W. 

Now let Uk E ~P:'~o' k > O. Then for k > ke, 

(Pk -- (Ao ~ -- ~)W)uo >_ (1='o - Ao~ = 0 in f~, 

and 

It  follows that  

(Co - (~o ~ - ~ ) w ) u k  _> ( ek  - ~o~W)u~ = o in  ~ .  

~o o _ ~ _< ~o ~ _< ~o + ~, 

for every k >_ k~. Therefore, l i m k - ~  Ao k = A ~ and Ao is a Lipsehitz continuous 

function of c with Lipschitz constant 1. | 

Similarly, we show that  Ao is a monotone, continuous function of W. 
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LEMMA 7.10: (a) Suppose that W, <_ W2 and denote A~ = Ao(f2, P, Wi, B) for 
i = 1, 2. If  S~'~p(~) ~ O, then Ao 2 < A~. On the other hand, if W 1 > 0 and 

ST.ip(S2) = O, then A2o _> Ao ~. 

(b) Let {Wk}k~176 and W be Cffoc(~ \ F) functions such that Wk(X) --+ W(x) 
for every x E f~, and tWklo;n, < M(D'), for every f~' CC ~ \ F. Denote by 
Ao k -- Ao(~, P, Wk, B) and Ao = Ao(f~, P, W, B). Then l imsuPk_~ Ao k _< Ao. 

(c) I f W  > 0 and [wk(~) _ 1[o;~ ---+ O, then Ao k --+ Ao. w(~) 

Proof (a) Suppose that Sqf~p(~'~) r 0. Clearly, A~ > 0 for i = 1, 2. It follows 

that  831p_~w2(f2) C ST-lp_~Wl(D). Hence A 2 < Ao 1. 

On the other hand, suppose that  W1 _> 0 and ,ST/p(f~) = 0. It follows that 

A~o <_ 0 for i = 1,2, and S)t~p_)~Wl(~'~) C S'~'~p_A~W2(~-~ ). Thus, Ao ~ _< A2o . 
(b) Assume first that A := lira supk_~ Ao k < c~. By taking a subsequence, we 

may assume that Ao k --+ A. Since 7-lp_~koW k r 0, it follows as in Lemma 7.9 that 

~'~P-AW ~ ~" Thus, A _< AO. 
Suppose now that A = oc. We may assume that Ao k --+ c~. Then for every 

A > 0 there exists k~ such that 7tp-~wk ~ 0 for every k > k~. It follows that  

7-lp_Aw(~) ~ 0, which implies that Ao = oo. 

(c) If W > 0 and I--~ - llo;n -~ 0, then for every 0 < ~ < 1 there exists k~ 

such that  for every k~ < k E N, 

0 <_ (1 - r <_ Wk _< (I + r 

Now let uo E ?-/P~o" Suppose that Ao _> 0; then 

( ~ ) Ao ( l + x ) W ) u o = 0  in f2. P -  1 Wk uo>_ ( P -  l + e  

Hence, A~_ < Ao k for every k > k~. Similarly, if Ao < 0, then ~ < Ao k for every 
1 A - e  - -  

k > k~. Consequently, Ao _< lim infk-~oo AO k and l ima_~ Ao k = Ao. | 

COROLLARY 7.11: Fix a singular set F C 0fL Assume that ~ is the conormal 
direction. Let A N, Ao and A D be the generalized principal eigenvalues of the 

Neumann problem ('~ = 0), the generalized mixed boundary value problem, and 
the generalized Dirichlet problem (~D _~_ 0~), respectively. Then 

_< <_ 

We conclude this section with the following Protter-Weinberger type varia- 

tional principle for Ao (see [19]). 
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THEOREM 7.12: Suppose that P and B are operators of the forms (1.1) and 
(1.2) satisfying (1.3) (1.5). Let W E C~(~ \ F), W > 0 in t2, and let 

](: = ~ ( f l )  = {u C C2( f i )  A c l ( ~  \ F ) l u  > 0 in ~ \ F ,  B u  >_ 0}. (7.4) 

Then 

(7.5) 

Proof'. 

Ao= Ao(~, P, W, B) = sup inf { Pu  } 
uE~ xEf~ ~ " 

Let u E ~/P~o" Then u E/C, and for every x E ~, Ao = w~PU ~(x~J. Hence 

(7.6) Ao < sup inf 
- 

Pu 
uE IC xEfl 

Let u E K and denote # = inf~Ea{w2-~}. If # = --cx~, then obviously # < A0. 

Otherwise, the fact that # - ~ u u  < pu in ~t implies that  u E ST-/p,(~). Therefore 

{ ~ } < A0 for every u E/C. Consequently p <_ A0. So infxca pu 

(7.7) sup inf { P u }  

Combining (7.6) and (7.7), we obtain (7.5). I 

Remark 7.13: Suppose in addition to the assumptions of Theorem 7.12 that W 

and the coefficients of P are in C(~),  and the following slightly stronger version 

of the Protter-Weinberger variational principle holds true: 

(7.8) A0 = sup inf ~ Pu 
ur z~a t Wuu J" 

Then as in [19], one obtains the following Donsker-Varadhan variational principle 

A0 = inf_ sup { ~uuP(dx )}, 
~eM(f~) ue~nC2(fi) 

where M(~)  is the space of probability measures on ~. Note that if 0 f /E  C 2'~, 
F is either empty or a smooth closed manifold of dimension n - 1, and W and 

the coefficients of P are in C~(t~), then (7.8) holds true. 

8. Cr i t i ca l i ty  t h e o r y  

This section defines critical, subcritical, and supercritical operators, and also 

examines various criteria for these cases. First, we define a positive solution 

of minimal growth at infinity in f~ with respect to (P, B). This notion was 

introduced by S. Agmon [1] for the generalized Dirichlet problem. 
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Definition 8.1: (a) Let K be a compact set in ft. The set ft \ K is called a 
n e i g h b o r h o o d  of  inf in i ty  in ft. 

(b) Let ft \ K be a neighborhood of infinity in ft. By the sets STlp, s ( f t  ". K) ,  

Hp, B(ft \ K ) ,  7/~,s(ft \ K ) ,  we mean the corresponding sets of positive (su- 

per)solutions in ft \ K,  where we consider OK as part of the singular set of 

0(ft \ K).  For example, u �9 7/~ \ K) if 

u > 0 i n ~ \ K ,  Pu  = O in t2 \ K,  and Bu = O on Ot2 \ F. 

(c) A function u E ~/~ \ K) is a posi t ive so lu t ion  of  t h e  opera-  

t o r  (P, B) of  m in ima l  g r o w t h  a t  inf ini ty  in ft (in short, positive solu- 

tion of minimal growth), if for every smooth K CC K '  CC ft and for every 

w E $TIp, B ( ~ \ K ' ) M C ( ( f I \ K  ') \ F ) ,  satisfying u < w on OK', we have u < w 

in D \ K ' .  

Remark 8.2: Clearly, u C ~/~ \ K) is a positive solution of minimal growth 

at infinity in ft if and only if for every smooth K C C K '  C C ft and w e 

$~P,B( f t  \ K ' )  M C((f t  ". K')  ". F) there exists C > 0 such that  u < Cw in 

~ \ K ' .  

Next, we define the ground state and the Green function. 

Definition 8.3: (a) A positive solution u C 7-/~ S(ft) of minimal growth at infinity 
in ~ is called a g round  s t a t e  of the operator (P, B) in t~. 

(b) Let y G ft, and let GD(y)(X, z) be the minimal positive (Dirichlet) Green 

function of the operator P in B~(y), for some B~(y) C ft. A positive solution 

Uy �9 7l~ \{y})  which has a minimal growth at infinity in ft and satisfies 

lira uy(x) - 1 

is called a G r e e n  func t ion  of the operator (P, B) in ft with a pole at {y}. We 
denote it by GP'B[x ~ ,y), or simply G~(x ,y) .  

We are ready now to generalize the definition of subcriticality which was 

introduced in [18, 21, 29] for the generalized Dirichlet problem. 

Definition 8.4: We say that (P, B) is a cri t ical  operator in ft if (P, B) has a 

ground state. The operator (P, B) is subcr i t i ca l  in ft if ST/p,u(t2) ~ O, but 

(P, B) does not admit a ground state. The operator (P, B) is superc r i t i ca l  in 

if Snp ,  B(~) = O. 
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THEOREM 8.5: Suppose that S'J{p(~) ~ ~, and let K be a smooth nonempty 

compact set in f~. Then there exists a positive solution in D = ft \ K of the 

operator (P, B) of minimal growth at infinity in ft. 

Proof'. According to Theorem 4.4, there exists a positive Perron solution u0 of 

the problem: 

(8.1) P u o = O i n D ,  B u o = O o n O f t \ F ,  and u o = l o n 0 K .  

We claim that  u0 is the desired solution. Let K CC K ~ CC f~ and denote 

D '  = ft \ K ' .  Let w e S~t~p,B(ft \ K ' )  n C(D' \ F), satisfying u0 _< w on OK'. 

We need to prove that  u0 _< w in D'. 

Consider the degenerate mixed boundary value problem: 

(8.2) P u = O i n D ' ,  B u = O o n O f t \ F ,  and u = u 0 o n 0 K ' .  

Let S+(D) and S•  I) be the sets of Perron supersolutions (subsolutions) of 

problems (8.1) and (8.2), respectively. By Theorem 4.4, we may assume that  the 

system of neighborhoods of local solvability of problem (8.2) is a subset of the 

corresponding system of neighborhoods of problem (8.1). Moreover, we may also 

take the same reference positive supersolution v E $7-/p(ft) for the two problems. 

We claim that  S - ( D )  C S- (D' ) .  Take w -  E S - ( D ) ;  clearly, l imsup ~ L < 0 

on F and at oo. Since u0 is the supremum of Perron subsolutions in S - ( D ) ,  it 

follows that  w -  _< u0 on OK ~. Let y E D ~ \ ( F  U OKt). As the neighborhood 

N = N(y) of local solvability in D ~ does not intersect OK ~, if w -  ~ h on OIN, 
then w -  _< (h)~ = (h)~'  in N, where (h) D and (h)~'  are the local solutions for 

the problems (8.1) and (8.2), respectively. Hence, w -  E S - ( D ' ) .  

For each w • C S• we have w -  _< w +, therefore it is enough to show 

that  w e S+(D'). Evidently, l iminf(w/v) > 0 on F and at c~. To see that  

w is a Perron supersolution, we consider again y C D ~ \ ( F  U OK ~) and N = 

N(y).  Let h be a continuous function such that  w _> h on O'N. Inasmuch as 

N(y) n (F u OK') = O and (h)y = h on O'N, we have 

Pw>_ ( h ) y i n N ,  Bw>_ ( h ) y o n N M ( O f ~ \ F ) ,  w >  (h)yonO'N.  

Thus w >_ (h)y in N(y),  and w E S+(D'). Hence w _> w -  in D' ,  for all w -  E 

S-(D~).  In particular, w _> w -  for all w -  E S - ( D ) .  Consequently, w >_ u0 in 

Dq I 
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Remark 8.6: I t  can be easily shown that  the Perron solution for problem (8.2) 

is equal to u0. 

THEOREM 8.7: Suppose that S?-lp(D) ~ ~. Then for every y E D there exists 

w E 7-/~ \ {y} )  such that w is a positive solution of  minimal growth at infinity 

in ~. 

Proof: Let w E 7{~ \ {y} )  be the positive solution which was constructed in 

Lemma 6.1. We claim that  w is the desired solution. Let K CC ~ be a smooth 

compact set such that  y E intK, and u E ST-lp(~ \ K)MC(gt \ K \ F). Since the 

sequence of positive solutions {wE } of the proof of Lemma 6.1 converges uniformly 

on OK to the continuous function w, it follows that  w~ are uniformly bounded 

there. As u > 0 on OK, there exists a positive constant k such that  for every 

> O, we <_ ku on OK. By Theorem 8.5, wE are positive solutions of minimal 

growth, and wE(x) <_ ku(x) in gt \ K.  Letting c -+ 0, we obtain w(x) <_ ku(x) in 

gt \ I f .  I 

Our aim now is to prove in several steps Theorems 1.3 and 1.4. Since these 

theorems are known to hold for the generalized Dirichlet problem, we will assume 

in the sequel that  F ~ 0n.  First we prove the following lemma. 

LEMMA 8.8: I f d i m S 3 / p  = 1, then S~t~p ~- ~t~Op. In particular, d imT/~  = 1. 

Proof  Suppose that  S~'~p = {CvIC > 0}. By Theorem 5.2 and Proposition 

5.4, S H  ~ ~ 0 and U p  ~ 0. It  follows that  

~ = u p  = { C v l C  > 0}. 

Therefore, Bv  = 0 on 0 ~  \ F and Pv  = 0 in ~. Consequently, v E 7/~ I 

THEOREM 8.9: The operator P is critical in gt ff and only ff  d imSTtp  = 1. 

Proof'. Assume that  P is critical and let Uo be a ground state. Suppose that  

w E ST-lp and let K be a smooth nonempty compact set in ~. Take C > 0 such 

that  Uo <_ Cw on OK. As uo is of minimal growth, it follows that  Uo <_ Cw in 

\ K.  By the generalized maximum principle, we infer that  uo <_ Cw in K,  

and hence in ~. Using the c-maximal method it follows that  w -- elu0 for some 

Zl > 0, which implies that  d i m S ~ p  -- 1. 

Suppose that  dim37-/p -- 1. Lemma 8.8 implies that  

(8.3) s u p  = n ~ : { C v l C  > 0}. 
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We claim that  v is a ground state. According to Lemma 8.7, there exists a 

positive function w C ?_/o(~ \{x0})  which is of minimal growth at infinity in 

fL Furthermore, by Lemma 6.2, we have w = aGD(.,Xo) + ~,  where a is a 

nonnegative constant, G D(x, y) is the Green function with respect to the gener- 

alized Dirichlet boundary value problem, and either ~ C ?_/o(f~) (for a = 0) or 

e 7-/p(f~) \ 7-/~ (for a > 0). In view of (8.3), a = 0. It  follows that  ~ = w 

is a positive solution in f~ of minimal growth at infinity in ~. Thus, w = Cv is a 

ground state. | 

In the following lemmas, we prove that  the operator (P, B) is subcritical in f~ 

if and only if it admits a Green function. 

LEMMA 8.10: I f  (P,B) is subcritical in ~, then for every y E f~ there exists a 

unique Green function G~(x, y) of the operator (P,B) with a pole at y. 

Proof: We may assume that  F # 0~.  Suppose that  (P, B) is a subcritical 

operator and fix y C ~. By Lemma 8.7, there exists a positive solution in f~ \ { y }  

of minimal growth at infinity of f~, denoted by Uy(X). According to Lemma 6.2, 

%(x) = aGD(x,y) + u(x), where a >_ 0 and u C 7-/p(~). We proved in Lemma 

8.9 that  if a = 0, then (P, B) is a critical operator. Consequently, for a subcritical 

operator, a > 0. Therefore, the function G s (x ,  y) = ~ is a Green function of 

the operator (P,B) with a pole at y. 

We need to prove the uniqueness. Suppose that  there exists another Green 

function F(x, y) with a pole at y. Since 

lim F ( x , y )  _ 1,  
C (x, y) 

it follows that  for every 0 < r < 1 there exists r~ > 0 such that  G B _> ~F in 

B~  (y). As a result of F being a positive solution of minimal growth at  infinity 

of f~, it follows that  G B > c F  in f~ \ B~  (y), hence G B 2 c F  in fL Thus G B > F 

in ~. Similarly G B < F in ~. Consequently F(x,y)  = G~(x,y). | 

LEMMA 8.11: (i', B) is subcritical in f~ if and only if STtp(f~) \ ~Op(f~) # O. 

Proof: ~ Suppose that  ST-/p(f~) \ 7/~,(f~) r O. If dimST-/p(a)  = 1, then by 

Corollary 8.8, ST-/p(fl) = 7_/o(~), which contradicts our assumption. Hence 

dimS?-/p(fl)  > 1, which implies that  7-/p(fl) # 0. By Theorem 8.9, (P,B) is 

subcritical in ~. 

Suppose that  (P, B) is a subcritical operator in ~ and recall that  we may 

assume that  P r 0~ .  In view of Lemma 8.10, there exists a Green function 
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GB(.,y)  with a pole at {y}. By Lemma 6.2, GB(.,y) ---- c~GD(-,y) + w(.), where 
> 0 and ~ e np(f t )  \ no(f t ) .  Thus Snp(f t )  \ n o ( ~ )  ~ 0. , 

LEMMA 8.12: The operator (P,B)  is a subcritical operator in ft i f  and only if  

for every y C ft the operator (P, B) admits a (unique) Green function with a pole 

at y. 

Proof: ==~ follows from Lemma 8.10. 

r Suppose that  F(x,  y) is a Green flmction of (P, B). We may assume that  

F r Oft. In view of Lemma 6.2, F(x ,y )  = a G ~  where c~ _> 0 and 

w E 7-/p(ft). Clearly a > 0, and by Lemma 6.2, ~ E 7-/p(ft) "-. 7-/~ In the 

light of Lemma 8.11, (P, B) is subcritical. | 

In the following lemma and theorem, we present additional characterizations 

of criticality and subcriticality. 

LEMMA 8.13: (P, B) is subcritical in fl if  and only i f  S~lp(ft)  \ 7-lp(~) ~ O. 

Proof: ~ If S~-~p \ ~-~p ~ 0, then S ~ p  \ 7-/~ r 0, and by Lemma 8.11, (P, B) 

is subcritical in ft. 

Suppose that (P, B) is subcritical. According to Theorem 8.9, there exist 

uo and Ul in S~lp such that Uo ~ Cul.  We have 

o§ 1 o 
2 \ U 0 ]  -2 ~11 1~U1" 4 uO Ul ")"aijcJi ~1 \Ul  I 

i=l 
1 --3/2 5 / 2 .  V(?~0)  2 > 

where Ao = Ao(x) is the elliptieity constant at x. In addition, 

B uv/h-~-~=2\UoZ Buo+~ ~ Bul>_O. 

Consequently ugrff~ - E S~]'~p \ ~'~p. | 

LEMMA 8.14: The operator (P, B) is subcritical in ~ i f  and only if  there exists 

W >~ 0 such that P - W is subcritical. 

Proof: If (P, B) is subcritical, then Lemma 8.13 implies that there exists u E 

S~-~p \ ~'~p. Define W = P u .  hence (P - W)u  ~> 0 in ft and Bu > 0 on 0ft "-. F. 

According to Lemma 8.13, P - W is subcritical. 



Vol. 132, 2002 P O S I T I V I T Y  OF SOLUTIONS 163 

On the other hand, if there exists W ~> 0 such that  P - W is subcritical, then 

there exists u E ST ip_w ,  and it follows that  u E S?-lp \ ?-lp. Thus, by Lemma 

8.13, P is subcritical. | 

LEMMA 8.15: I f (P,  B) is not a supercritical operator in f~, then for every W ~ 0 

the operator P + W is subcritical. 

Proof: Let u E ST-/p. Clearly u E ,ST-lp+w \ ~-~P+W, and by Lemma 8.13, 

P + W is subcritical. 1 

THEOREM 8.16: The operator (P ,B)  is critical in ft i f  and only if  for every 

W >~ O, P + W is subcritical and P - W is supercritical. 

Proof: ~ Suppose that  W ~> 0. If P is a critical operator in ft, then by Lemma 

8.15, P + W is subcritieal. 

Moreover, if for some W > 0 the operator P - W is not supercritical, 

then, according to Lemma 8.15, the operator P = (P  - W) + W is subcritical. 

Consequently, if P is critical, then P - W is supercritical for all W >~ 0. 

r Take W0 > 0 in ft. By our assumption, for every ~ > 0, P + e W 0  is 

subcritical. Hence P + eW0 admits a positive normalized solution u~ E 7-/p. By 

Lemma 6.3, ~'~p ~ 0. Therefore P is not supercritieal. 

In view of Lemma 8.14, if P is subcritical, there exists W > 0 such that  P -  W 

is subcritical. Thus, under our assumption, P is critical. II 

LEMMA 8.17: The operator (P, B) is subcritical in f~ if  and only if  for any 

compact set K r 0 in Q there exists u E $7-lp(f~) such that Pu  > 0 on K.  

Proof: If there exists u E $7-tp such that  P u  > 0 in K,  then, by Lemma 8.13, 

(P, B) is a suberitical operator. 

Suppose that  (P, B) is subcritical in ft. Take f E C~(ft) ,  f _> 0, such that  

f > 0 in K.  We claim that  there exists Uo E $7 /p  satisfying Puo = f in ft. 

Recall our assmnption that  0[~ \ F r O. Take u E ~/p. Then for each k _> 1 

( P + l / k ) u  > 0 in ft, and ( B + l / k ) u  > 0 on 0 f t \ F .  By Theorem 4.1, there 

exists a positive Perron solution uk E C 2 (Q) n C 1 (~ \ F) satisfying 

(8.4) ( P + l / k ) u a , = f i n f t  and ( B + l / k ) u A : = 0 o n 0 f t \ F .  

U oo If { k}k=l is locally uniformly bounded in ~ \ F, then there exists a subse- 

quence that  converges to a positive solution u0 of the problem 

P u = f i n f ~  and B u = O o n O f t \ F ,  
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and the proof is completed. 

Otherwise, we have a point x0 C ~ \ F such that  uk(xo) ~ co. Set wk(x) = 

uk(x) Hence the sequence {Wk} has a subsequence that  converges to a positive u~(xo)" 
function Wo �9 C2(ft) N C1(~ \ F) satisfying 

(8.5) Pwo = O in ft and Bwo = O on Oft ". F. 

We shall show that  in this case w0 is a ground state, which contradicts our 

assumption that  the operator is subcritical. 

First, it can be shown as in the proof of Theorem 8.5 that  wk is a positive 

solution of minimal growth with respect to the operator (P + 1/k, B + 1/k). 

Now let K'  be a smooth compact set such that  supp(f )  CC K '  and denote 

D = ft \ K ' .  Let w E C( / )  \ F) such that  

w > 0 ,  Pw >_ O in D and B w > O on Of~ \ F. 

There exists C > 0 such that  wk <_ Cw on OK'. Obviously, 

( P + l / k ) C w > O i n D ,  ( B + l / k ) C w > O o n O f t \ F .  

Hence Cw >_ wk in D and therefore Cw > Wo in D. Accordingly, wo is a positive 

solution of problem (8.5) of minimal growth in ft, and hence it is a ground state. 
| 

In the following theorem, we prove that  for W with a compact support,  the 

subcriticality is an "open" property. 

THEOREM 8.18: The operator (P, B) is subcritical in f~ i f  and only i f  for every 

W E C A (f~), W r 0 there exists Go > 0 such that (P  - eW, B) is subcritical in f~ 

for every ]e I < Go. 

Proof: ~ Suppose that  P is subcritical and let W E Cg(~) ,  W r 0. If  W _< 0, 

then (P - GW, B) is subcritical in ~, for every nonnegative e. Otherwise, define 

W+ = max{W, 0} and K + = supp(W+). By Lemma 8.17, there exists u E S U p  

satisfying Pu  > 0 in K +. Take 

minK+(Pu) 
e+ = 2 m a x , +  (W+u)" 

Hence, for every 0 < G < G+, 

( P - e W ) u > _ _ ( P - e W + ) u > ( P - v + W + ) u > ~ O i n f ~ ,  Bu>_OonOf t .  
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Consequently, P - r  is subcritical for every 0 < s < ~+. 

By replacing W by - W  we obtain r < 0 such that  P - cW is subcritical for 

every c_ < ~ < 0. 

r Take W C C~(ft) ,  W >~ 0. By our assumption, there exists ~ > 0 such that  

P - r is subcritical. Let u~ C $7/p-cw(f~) ;  then u~ E $?-/p \ ?-/p, and P is 

subcritical. | 

Proof of Theorems 1.3 and 1.4: These two theorems follow directly from Theo- 

rems 8.9, 8.16 and 8.18 and Lemmas 8.11 and 8.12. | 

We conclude the paper  with some applications. 

COROLLARY 8.19: Suppose that W C C ~ ( ~ \ F ) ,  W ~ O. For every t E in tS  

the operator (Pt, B) is subcritical in ft. Moreover, i f W  C C~(ft),  W ~ O, then 

for t E OS the operator (Pt, B) is critical in ft. 

Proof: The first assertion follows from the proof of Lemma 6.3 and Lemma 8.13. 

The second assertion follows from Theorem 8.18. | 

COROLLARY 8.20: (a)  Suppose that C 1 ~ C 2 in f~, ~/1 ~ "~2 and 31 ~_ f12 on 

Oft \ F, and assume that not all the above inequalities are equalities. For i = 1, 2, 

denote Pi = P + ci, Bi = ~ + flio~. I f  (P2, B2) is not supercritical in ft, then 

(P1, B1) is subcritical in ft. 

(b) Suppose that ftl  C ft2 such that 0ft l  \ F1 C 0ft2 \ F2, and assume that 

the boundary operators satisfy B21afl, .. r~ = B1. I f  ( P, B2) is not supercritical 

in ft2, then (P, B1) is subcritical in ftl .  

Proof: (a) If u E 7tp2,B ~ (ft), then u E STiR 1,B, (ft) \ 7_/0 ,B1 (~). By Lemma 

8.13, the operator (P1, B1) is subcritical in ft. 

(b) Suppose that  (P, B2) is not supercritical in f~2. Take W >~ 0 with a compact 

support, in ft2 \ ftl- According to Lemma 8.15, (P  + W, B2) is subcritieal in 

ft2. Let K CC ftl. By Lemma 8.17, there exists a function u C SNp+w,  B2(ft2) 

satisfying ( P + W ) u  > 0 in K.  Since W = 0 in ftl ,  it follows that  u E ST-lp, s~(ftl) 

and Pu  > 0 in K C ftl.  In view of Lemma 8.17, (P, B1) is subcritical operator 

in i l l .  | 

We now show that  in general, if ftl  C ft2, then statement (b) of Lemma 8.20 

does not hold, and that  dim 74 ~ = 1 does not imply criticality. 
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Example 8.21: Let f~n = R ~ \ BR(0), where R > 0 and n _> 2. Consider the 

Neumann problem: 

Ou 
(8.6) - A u  = 0 in gtR, On 0 on OBn. 

Then d imT/~ = 1 for every R > 0. Moreover, for n = 2 the operator 

( - A ,  o )  is critical in mR for all R > 0 (although it is subcritical for the Dirichlet 

problem or if 7 ~> 0), while for n _> 3 the operator ( - A ,  o )  is subcritical operator 

in Q for all R > 0. 

COROLLARY 8.22: Suppose that ~tl C_ ~2 such that 0il l  \ F1 C 0Q2 \ F2. 

Suppose also that cl >_ c2 in Q1, ~'1 >_ ~/2 and fll ~_ f12 on 0 ~ 1 \  F1. For 

i = 1,2, denote Pi = P + c i ,  Bi = 7i +/3i O ,  and suppose that (P2, B2) is 
- ,'-~Pi,Bi subcritical in f~2. Denote Dy t , ~  the Green function of  (Pi, Bi ) in f~i. Then 

GPI,B, (., y) _< GP2~,'2 ~.,( y) in ~-~1" 

Proos (a) By Corollary 8.20, (P1, B1) is subcritical in il l .  Obviously, 

GP~ ,B~ 
lira fl~ (" y ) - I .  
x - ~ y  G P2,B~ 

Hence, for every 0 < r < 1 there exists r~ > 0 such that GPI'B~ (., y) 
_< (1 P:~,B2 + r (-, y) in Br, (y). Since 

P1 f~P2'B2 B G P2'B2 i ~ 2  (" Y) -> 0 in 121 \ BT-~, 1 a2 t', Y) -> 0 on 0 ~ t  \ El, 

and GPI~I'B1 (., y) has minimal growth at infinity of Q1, it follows that G p'~'ul ~',~ y) 
<_ (1 + r ", y) in gtl \ Br,(y),  and hence in f~l. The conclusion follows 

easily by letting r --+ 0. 1 
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