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ABSTRACT

In this paper we study the degenerate mixed boundary value
problem:

Pu=finQ, Bu=gondQ~T,

where  is a domain in R™, P is a second order linear elliptic operator
with real coefficients, ' C 99 is a relatively closed set, and B is an
oblique boundary operator defined only on 9 ~T" which is assumed to
be a smooth part of the boundary.

The aim of this research is to establish some basic results concerning
positive solutions. In particular, we study the solvability of the above
boundary value problem in the class of nonnegative functions, and prop-
erties of the generalized principal eigenvalue, the ground state, and the
Green function associated with this problem. The notion of criticality
and subcriticality for this problem is introduced, and a criticality theory
for this problem is established. The analogs for the generalized Dirichlet
boundary value problem, where I' = 9, were examined intensively by
many authors.
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1. Introduction

The aim of this paper is to study some positivity properties of a degenerate
mixed boundary value problem for a second order elliptic operator P in a general
domain in  C R", where an oblique boundary operator B is defined only on a
smooth and relatively open portion of the boundary. On the remaining part of
the boundary which we call the singular set I'; we do not explicitly impose any
boundary condition. Nevertheless, since we look for positive solutions of minimal
growth at I' (and at infinity), the boundary condition on I" should be interpreted
as a zero Dirichlet boundary condition in some generalized sense. Therefore, we
indeed deal with a mixed boundary value problem.

Let Q be a domain in R*, and let P be a second order linear elliptic differential
operator with real coefficients of the form

n

n
(1.1) Pu=— Z a;j(x)0;u+ Zbi(x)aiu +c(z)u, ze
=1 i=1
Let I' C 09 be a relatively closed set, and suppose that 9 \T is a C%°-
portion of Q. For z € QT let 7i(x) be the unit outward normal from the
boundary, and #(z) be a unit vector pointing outward from the boundary. Let
B be an oblique boundary operator of the form

(1.2) Bu:’y(x)u-%,@(x)%, x € IN~T.
We always assume that
(1.3) aij bisc € C*(QNT), 1<i,j<n,

and that for all z € Q~T and ¢ € R* \{0},

(1.4) 0 < Ao(z Zel < Z ai; (2)&&; < Az 252
4,j=1
Furthermore, it is always assumed that
L=Tr, 00 T e€C?*, v,8,7 e C**(0Q~T), and
(1.5) ¥>0, >0 and V-7 >0o0ndQNT.

Remark 1.1: Sometimes we use the equivalent formulation for the boundary
operator B, namely,

(1.6) Bu=~v(z)u+ B(z)-Vu, ze€dQ\T,
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where v > 0, 7,3 € CH*(0Q~T), and § -7 > 0.

We investigate the degenerate mixed boundary value problem
(1.7 Pu=finQ, Bu=gondQ~T.

Note that we do not exclude the case where I = 3, and the case where T = 9f0.
Recall also that the boundary condition on I' should be interpreted as a zero
Dirichlet boundary condition in some generalized sense. It turns out that in the
regular case, where the closed set I' is a smooth relatively open part of 92, we
actually impose zero Dirichlet boundary condition on I'. It follows that classical
boundary value problems like the Dirichlet, Neumann, Robin, Zaremba and even
some cases of the Poincaré problem are covered by our setting. For related results
concerning these boundary value problerns, see [2, 6, 8, 11, 12, 13, 14, 15, 20, 30,
and the references therein].

We study the principal eigenvalue, criticality theory, and general properties of
the cone of positive solutions. The analogs for the generalized Dirichlet prob-
lem (where I = 9%, and €2 is an arbitrary domain) were examined intensively in
[18, 21, 22, 23, 25, and the references therein]. Note that this case is also covered
by our setting.

When one compares the present problem with the generalized Dirichlet bound-
ary value problem, one sees that some fundamental properties which hold true for
the generalized Dirichlet boundary value problem are not valid or at least are not
obvious in our case (see Examples 7.8 and 8.21). Consequently, the construction
of the Green function for our case is much more complicated. Moreover, even if
we impose on I' the Dirichlet boundary condition, then already in the smooth
bounded domain case, the problem is in general not elliptic. Another difficulty
that arises is that the natural adjoint boundary operator does not satisfy the
assumption (1.5). In this paper, we refrain from discussing the adjoint problem.

The following sets of positive solutions and supersolutions play an important
role in our study:

Definition 1.2: We define the following families:

Hpp(Q)=Hp={ucC}QANC (A T)| u>0inQ,

(1.8) Pu=01in Q, and Bu> 0 on 0Q T},
Hyp() =Hp ={uecC*ANCHAND)|u>0in Q,

(1.9) Pyu=0inQ, and Bu=0o0n 8Q~T},
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SHpp(Q) =SHp={uec C*(Q)NC' (O T)|u>0inQ,

(1.10) Pu>0inQ, and Bu>0on 9Q~T},
SHY p(Q) =SHp = {u e C}(YNCHQT)|u>0in L,
(1.11) Pu>0inQ, and Bu=0o0n 0Q~\T}.

If w € SHp p(2), then u is said to be a positive supersolution of the operator
(P, B) in Q.
We consider the one-parameter family of operators

Py := Pu—tW(z)u inQ,
where W € C*(Q2\T) is a real function, and ¢ € R. We also introduce the set
S = {t € R| Hp,(Q) # 0}.

If u belongs to one of the families (1.8)—(1.11), then Hopf’s lemma implies that
v > 0 on QN\T. The starting point of our analysis is Theorem 2.1, where we
extend slightly the generalized maximum principle [26]; it holds if SHp # @ and
either T # @ or  is unbounded. Furthermore, Theorem 5.2 states that in this
case H) # 0. Therefore,

S={tecR| U} #0}={tcR| SHp, #0}.

Moreover, as in the Dirichlet case, it follows that S is a closed interval, and if
S # 0, then S is bounded if and only if W changes its sign (see Lemmas 6.3 and
6.5).

In [14], G. M. Lieberman used the Perron method to derive the solvability
of the regular oblique boundary value problem in bounded domains under the
assumption that ¢ > 0. Using the same approach, we generalize this result,
and prove the solvability of the degenerate problem, in the class of nonnegative
functions, and in any domain, under the weaker assumption that SHp # 0. The
key ingredient of this approach is the property of local solvability, which is proved
in Section 3. In Section 4, the Perron process is applied and minimal positive
solutions are obtained for two basic degenerate problems (see Theorems 4.1 and
4.4).

In Section 5, we define the generalized principal eigenvalue for the boundary
value problem (1.7) as

o = Mo(Q, P,W, B) :=sup S = sup{t € R| Hp,(2) # 0},
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and prove in Lemma 7.1 that in regular cases, Aq is the classical principal eigen-
value [2], namely, the only eigenvalue with a positive eigenfunction.

H. Berestycki, L. Nirenberg and S. R. S. Varadhan (in [4]) considered the
Dirichlet boundary value problem in a bounded domain. They proved that the
principal eigenvalue A is an increasing, concave, Lipschitz continuous function
of ¢ (with respect to the L°-norm), and a decreasing function of the domain (see
also [17, 25]). In Section 7 it is shown that Aq is a concave, Lipschitz continuous,
increasing function of the coefficient ¢, and a continuous monotone function of
the weight function W. In addition, Ag is a decreasing function of the domain in
an appropriate manner. Note that in general, the monotonicity with respect to
the domain in the standard sense does not hold true even for the regular oblique
derivative problem (see Example 7.8).

Section 8 is devoted to the criticality theory. First, we define for our problem
the notions of positive solutions of minimal growth at infinity of 2, the
ground state, and the Green function GE(x,y). In Theorem 8.5, it is proved
that the Perron solution of a certain problem in a neighborhood of infinity in Q
is a positive solution of minimal growth.

We generalize the notion of criticality and subcriticality which was studied in
(18, 21, 22, 23, 29] for the generalized Dirichlet problem. The operator (P, B)
is critical in 2 if the problem admits a ground state with eigenvalue zero, that
is, a positive solution in H} () of minimal growth. The operator (P, B) is
subcritical if it has a positive solution, but does not possess a ground state, and
(P, B) is supercritical if SHp g(Q2) = 0.

We summarize the main results of Section 8 in the following two theorems.
These results are well known for the generalized Dirichlet problem.

THEOREM 1.3: The following assertions are equivalent:
(a) The operator (P, B) is critical in .
(b) dimSHp(2) =1.
(c) HEH(Q) # 0, and (P, B) does not admit a Green function in 2.
(d) SHp(Q) = HH(R) # 0.
(e) For any W 2 0, the operator P+ W is subcritical and the operator P — W
is supercntzcal in Q.

THEOREM 1.4: The following assertions are equivalent:
(a) The operator (P, B) is subcritical in €.
(b) dimSHp(2) > 1.
(c) The operator (P, B) admits a Green function in 2.
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(d) SHp() NHH(Q) # 0.
(e) For any W € C§ () there exists g > 0 such that the operator P — eW s
subcritical in § for every |} < go.

NOTATION.

R} = {x=(21,...,2,) €ER*| 2, >0}, R{ ={r€R"|z, =0}
Bs(zo) = {zx € R*| |z — z0| < 8}, Bs = Bs(0).

lulo;a = sup ul,  Julke = lluller@y = Y, IDPuloq.

1Bl<k
[U]a;0 = sup |_U_(|~';)__—’T£Z/)|’ where 0 < a < 1,
cita U
Julk,ase = lullgra@ = Y [Duloa+ Y [DPulaga.

|8|<k 181=k
WEIGHTED HOLDER NORMS. LetE COQ,0<k€Z,0<a<]l,k+a+b>0;
d(z) = dist(z, 002\ %), Qs = {x € Q| d(z) > d}.

b b
|u|§c,31;9 = %gg{5k+a+blulk,a;ﬂa}a Ck’a'(b)(ﬂ) = {y| lulgc,gx;ﬂ < oo},

110, s = inf{lg|{) ol g € CP*ON(Q), lim _g(x) = f(wo)}.

TTo€EL

In a given context, the same letter C will be used to denote different constants
depending on the same set of arguments.

2. Auxiliary results

Let P and B be operators of the forms (1.1) and (1.2) satisfying (1.3)—(1.5). The
first theorem is a version of the generalized maximum principle [26]:

THEOREM 2.1 (Generalized maximum principle): Let Q be a domain in R*. In
case that Q is bounded, assume further that T' # §. Suppose that SHp # 0.
Assume that v € C?(Q) N CY(Q \T) satisfies

(21) Puv>0in®, Bv>00n00Q T, liminf - >0, and liminf% >0,
£ — u z—00

z€EN €N

for some u € SHp. Then either v> 0 in Q~NT, orv=10in Q\T.

Proof: By the definition of SHp, and Hopf’s lemma, u > 0 in Q \ T, and

(2.2) Pu>0inQ, and Bu>0ondQ~T.
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Define P%w (u“’ on §, that is,

Plw = Pfw+ ctw=— Za2181]w+2b Ow + ctw.

3,j=1
Clearly, the coefficients ay; = aij, b = —= Zama u+ b; are in C’(Q ~T), and

¢t = P*(1) = %ﬁ > 0. We also define B%w = —B-(Z—w) on 9Q T, namely,
BY*w = y*w + ﬂ%—’ﬁ, where v* = %. Thus, v* > 0 and 8 > 0 on 02 ~T. Now
take w = 2, so P'w = % >0inQ, B¥w = % >00on QT iminf, ,rw > 0,
and liminf,_,., w > 0.

If w = k, where k is a constant, then liminf, ,rw > 0, or liminf, ,,cw > 0
implies that & > 0, and v = ku. Therefore, either v = 0 in 2, or v > 0 in €.

Suppose that w # const. If a point x € Q such that w(z) < 0 exists, then by
the strong maximum principle for the operator P*, either

min {hm inf w, hmlnfw} <0,

z—8r T—00

or there is a minimum point zo € QT such that w(xze) < 0. The first case
contradicts our assumption. In the second case, since Pfw > —c*w > 0 in a
neighborhood of g, it follows from Hopf’s lemma for the operator P§* and the
function w that Q%%”ﬁ < 0. Thus, B*w(zg) < 0, contradicting B*w > 0.

Consequently, w > 0 in €2, and, by the strong maximum principle, either w > 0
in , or w = 0 in Q. Hence, either v > 0 in Q, or v = 0 in . Moreover, if v > 0
in Q, then, by Hopf’s lemma, v > 0 in QN T. ]

Remark 2.2: When €2 is a bounded domain and T' = @, the above generalized
maximum principle holds true provided that v € SH ~ H°. Indeed, if w # const.,
then the proof is identical, and when w = const. the proof is trivial.

We extend slightly a lemma of J. Serrin [28].

LEMMA 2.3: Let Q be a bounded domain in R" of class C?. Assume that P
is a uniformly elliptic operator in Q of the form (1.1) with C*(Q) coefficients,
and B is a boundary operator of the form (1.2) satisfying (1.5). If there exists a
function u(z) € C*(Q) N CY(Q~T) such that

(2.3) u>0, Pu>0inQ, and Bu>0ondQ~T,
then there exists a function #(x) € C%(Q) N CYQ\T) such that

(2.4) (_linf “>0, Pe>0inQ, and Bi>0ondQ~T.
~T
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Proof: We use the Serrin’s construction. Let p be a positive constant, and define

a function
h(t):{sp —2pt—t2 0<t<p/2
p? t>p,

such that h € C*[0,00), p*> < h < 3p?, |W/| < 4p and |h"| < 8. Set
w(z) = u(z) + eh(d(x)),

where d:  — R is the distance function from 9. The function h(d(x)) is a
smooth function of z for a sufficiently small p. Therefore, @(z) > €p? > 0 in
Q~T, and @(z) € C*(Q) N CYQ \T). Moreover,

n

Ph=- " a;oi(d h”+2(b8 Zawaa )h'+ch.

i,j=1

By our assumption, {a;;(z)} is a continuous and positive definite matrix in €.
Therefore, there exist positive numbers Ag < A such that

(2.5) AOZQ < Z aij(2)&& <A D&,
i,j=1 i=1
for all z €  and € € R*. It follows that
Pii > Pu+€[2A0 — A(3p° + 3p)] for d < p/2,

Pii > Pu —e[8A + A(3p% +4p)] for p/2<d < p,
Pii > Pu—¢eAlh| > Pu—cAp* ford > p,

where A is a positive constant depending on the maximum of §;0;(d) in0 < d < p
and on the bounds of the coefficients in 2. Furthermore,

Ba = Bu+s['yh+ ﬂh’ ] > Bu+¢[3yp? +2Bp7 - 1] on QT
It follows that for p and e small enough,

_infrft>0, Pi>0in, and Bit>0ondQ~T. ]

LOAN

Remark 2.4: Let us assume in addition to the hypotheses of Lemma 2.3 that
u € C(§2). Then there exists a function @(x) € C*(2) N CYQNT) N C() that
satisfies & > 0in Q, Pi > 0in Q, and Bé > 0 on dQ \T.
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3. Local solvability

In this section, we prove the local solvability property which is the key for the
construction of the Perron solution of our mixed boundary value problem.

Definition 3.1 (Local solvability): The boundary value problem
(3.1) Pyu=fin§), Bu=gondQ> T

is locally solvable if for each y € Q\T, there is a relatively open subset N =
N(y) of QT containing y such that for any h € C(N) there is a (unique)
solution v € C%(N) N C(N) of the mixed boundary value problem

(3.2) Pv=finNNQ, Bv=gon NNodQ, and v=hondN,

where N = ON N Q. We denote this function v by (h), to emphasize its
dependence on h and y.

To establish the local solvability of (3.1), we first prove the solvability of (3.2)
for N and Q of a special form. For 0 < R < 1, set

Tog = (0,...,0,'—R),

(3.3) Dr={z €R}: |z —zo| <1},

Yp={z e Ry: |z —zo] < 1}.
First, we derive some a priori bounds on solutions of mixed boundary value
problems in Dg. These a priori bounds and their proofs are similar to Lemma 3
in [14], but here we do not assume that ¢ > 0. These bounds, in conjunction with

the solvability of a particular boundary value and an approximation argument,
will be used to obtain the local solvability.

LEMMA 3.2: Let P and B be operators of the forms (1.1) and (1.6) which are
defined on Dgp and LR, respectively. Suppose that

n

(3.4) > aij(x)éig; 21¢* for all z € Dg, £ €R™,
i,j=1

(3.5) Zﬂi(a:)ni(x) >1 for allx € Tp.
i=1

Let m and M be positive constants with m < 1 and M > 1, such that

(3.6) lclo;pn + Y (Biloins + 1Bilo:zs) < M,

=1
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and

V3 M 2M
(3.7 1>R>max{—2—,\/1_m+M2,\/1+4M2,( m2 + —m)}.

If u € C*(Dp UXR)NC(DR) is a solution of
(3.8) Pu=finDg, Bu=gonXg, u=0o0n0Dg~Xg,

then
F— 2— 1—
supd ™" u] < K(fIEom + 19155,
R

where d is the distance function to 9Dg ~ T R, and K is a positive constant which
depends only on m.

Proof: Set y = (y1,..-,¥n) = = — 2, 7 = |y|, wr(z) = (1 — r?)™. Note that
d(z) = dist(x,dDr ~ Zg) = 1 — r. One can check that

(3.9) Pug > BUF2d=D  in Dg,
Bwg > qriamed™ ) on T,
Set

ve = xu— K(fI§7™ + g5 ™ )wr,

where K = max{4/m(1 — m),v/5/m}. From (3.9) we infer that

Pug < £f —d™ )™ <0, in D,
Buvy < +g - Jm_1|g]§)1_m) <0, onXpg,
vy = 2u— K(|fIF™ +1g/§""™)wr =0 on dDg\ Sp.
Note that for R > R’ which satisfies (3.7), wpr € SHp(Dg), and since wg > 0

on 8Dg \ Z g, we obtain

.. v
liminf —= =0.
t—+0Dgr~2p WR

Hence, by the generalized maximum principle (Theorem 2.1), vy < 0 in Dp.
Since wr(x) = (1 4+ r)™d™ < 2d™, it follows that

luld=™ < 2K (JF1F7™ +[glg™™).  »
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Remark 3.3: In fact, we have shown that there exists w € SH p p(Dg) which is
strictly positive in Dy provided that 1— R > 0 is sufficiently small. We note that
for the Dirichlet boundary value problem, if Q is a domain which is contained in

a “narrow” strip and P is a uniformly elliptic operator with bounded coefficients,
then SHp(R2) # O (see [4]).

The next step is to show that (3.8) is solvable in Dg under hypotheses similar
to those of Lemma 3.2.

LEMMA 3.4: Let us assume in addition to the hypotheses of Lemma 3.2 that
0 < a <1 and that

(310) |a'ij|a;DR_ + lbila;DR + lcla;DR + |ﬁi|1,a;$g + |7|1,a;ZR S M1~

Then for every f € C*(2~™)(Dg) and g € CV*(1=™)(TR), the boundary value
problem (3.8) has a unique solution u € C>*(=™)(Dg). Moreover,

(3.11) lul$o,. < Claym, M, My, R,n) (11257 + gl U2 )).

a;Dg o;XR

Proof: First, we show that any solution u € C>*(~™)(Dpg) of (3.8) obeys
(3.11). Let u be a C2*(=™) solution of (3.8). By the monotonicity properties of
the weighted Holder norms [9, Lemma 2.1],

0 - -
) < Jul§m) < Cluls ™,

so u € C2(Dr UZR) N C(Dg). It follows from the up to the boundary weighted
Schauder estimate [14, Lemma 1] with b= —m > —2 — a, that

1“'%,_02:)),3 <Gy (sl;lp |(f'mu| 4 |f|(2—m) + |g|(l_m) ).
R

o;Dg 1,0;XRr
Now, with the aid of Lemma 3.2, we have
- 2- 1- 2— 1-
ulsad < CUFloon” +l9l5isn? + 1F1CTm) + ol o),
which implies that

- 2— 1—
uls s, < CUACE™ + 1912wy,

a;Dg 1,0,XR

As in {14], in order to obtain the solvability of (3.8), we apply the method of
continuity. Consider the Banach space

B={ue C?*™(Dg)]u=0o0ndDr™ g},
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the normed linear space
N = C=CE=m)(Dp) x ¢ (1=m)(5p),
with the norm
(9l = 1115pn + ol
and the bounded linear operators Ty and Ty from B to A given by
Tou = (—Au, -0, u) and Tyu = (Pu, Bu).
We need to prove that T} is surjective. By [14], Ty is surjective. Define
T,=1-1Ts+7Ty, T;=(Pu,Bu), for0<r<1.
We infer that T is surjective if for every 0 < 7 <1,
(3.12) |luls < C|Truln.

Clearly, P, and B, satisfy the assumptions of the present lemma (Lemma 3.4).
Hence, by the first part of the proof, (3.11) is satisfied with a constant C' which
is independent on 7. But this means exactly (3.12). n

Next, we prove the solvability of mixed boundary value problems in Dr with
nonzero Dirichlet boundary values on Dp ™ Xg.

LEMMA 3.5: Suppose that the operators P and B satisfy all the assumptions of
Lemma 3.4. Then the problem

(3.13) Pu=finDp, Bu=gonXgr, u=hondDr~\Xp
has a unique solution v € C(Dg) N C*(Dgr U XR) for every f € C*(Dgr), g €
CL%(Sg) and h € C(ODg ™ Tg).

Proof: By Remark 3.3, there exists w € SHp(Dg) N C(Dg) which is strictly
positive in Dpg.
Let {hi} be a C3(Dg) sequence of function which converges to h uniformly on
0Dg \ Xg. Let vg be the solution of
Pvy = f — Phy in Dg, Buy =g—BhyonXg, wvg=0o0n O0Dp~%p
(this problem is solvable by Lemma 3.4). Set uj = vy + hy. Since

P(ur, —w) =0 in Dpg,
B{up —w) =0 on Xpg,

up —w = hy — hy on 0Dgr \ Xpg,
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the maximum principle for the operator P¥u = w~! P(wu) implies that

Up — Uy
sup ————’ < sup
Dpg w 8Dgp

Up — Uy
w ’
Suppose that the supremum of the right hand side is positive, and assume that ei-
ther a positive maximum point or a negative minimum point of *£~-2 is achieved
on L. By Hopf’s lemma for the operator Py’ := P¥ — ¢ and the function
=M we have BY(“="L) # 0, and this is a contradiction. Hence

‘Uk“ull <'hk—hl|
w lopg — w  |0;8Dg~%g’
thus ]
max |w
— e < hi. — hylo.
lug — wifo;pp < minlw]l k= hilo:oDgr ~ Shs

and the sequence {ux} converges uniformly to a continuous limit function w.
Therefore, ux|o < C, and Lemma 1 in [14] implies that

T 1
lugl$ < Clsup |dur] + |12 + 1918'2).
R

So the C2*(® porms of the u; are uniformly bounded. It follows that u €
C(Dr) N C?*(Dg U Zg) is a solution of (3.13). |

Finally, we prove the local solvability of (3.1) for a general domain.

LEMMA 3.6: Let P and B be operators of the forms (1.1) and (1.2) satisfying
(1.3)<(1.5), and let f € C*(Q~T) and g € CY*(dQ\T). Then (3.1) is locally
solvable.

Proof: For y € Q, take § > 0 sufficiently small such that N = N(y) = Bs(y) CC
€, and such that there exists u € C?(N) such that « > 0in N and Pu > 0in N.
Note that the existence of a positive supersolution « in a small ball N follows
from Remark 3.3.

Now, since 9N = 9'N, and (3.2) is the Dirichlet problem, its unique solvability
for any h € C(ON) is well-known. We remark that the existence of a positive
supersolution in the relatively compact subdomain N substitutes for the usual
assumption ¢ > 0.

Let y € 0Q~T. Using Lemma 3.5, the proof of the local solvability for y €
OO T is achieved exactly as in {14, Lemma 6] by straightening the boundary,
and taking a sufficiently small domain Dg of the form (3.3). ]
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4. The Perron process for the degenerate problem

The Perron process, usually reserved for the Dirichlet problem, has been used in
[14] to prove the solvability of a regular mixed boundary value problem. We use
here a modification of this process to establish the solvability of the degenerate
problem (1.7) in the class of nonnegative functions. As mentioned, the main
ingredient of the Perron method is the local solvability which was proved in
Lemma 3.6.

THEOREM 4.1: Let P and B be operators of the forms (1.1) and (1.2) satisfying
(1.3)~(1.5). Let f € C&(Q) and g € Cy*(82\T) be nonnegative functions such
that f and g are not both (identically) equal to zero. Assume further that there
exists a positive function v € C*() U CY(Q \T) satisfying

Pv>0 in Q,
(4.1) {Pv >dg >0 insupp(f),
Bv>0 on OQNT.

Then there exists a unique minimal positive solution u € C*() N CY(Q\T) of
the problem

(4.2) Pu=finQ, Bu=gondQ~T.

That is, u > 0 satisfies (4.2), and if w € C*(Q)NCY(Q\T) is a positive solution
of (4.2), then v < w.

Proof: The case where 3Q \T' = @ is the generalized Dirichlet boundary value
problem, and it is known that the existence of a positive supersolution which is
not a solution is a sufficient condition for the solvability of this boundary value
problem (see for example [25, Theorem 4.3.8]).

Suppose that QT # 0. By Lemma 3.6, the problem (4.2) is locally solvable.
Let {N(y)},ca~r be the corresponding system of neighborhoods. A Perron
sub(super)solution of (4.2) is a function w € C(Q \T), such that

limsup — <0, limsup~ <0 (n%nf% >0, lminf= > o)

zen VY zenr U
roT 2 — 00 z—+I" £—00

and for any y € Q\T, and any h € C(N(y)), if h > w (h < w) on &'N(y),
then (h), > w ((h)y < w) in N(y) (see Definition 3.1). The set of all Perron
subsolutions (supersolutions) of (4.2) is denoted by S~ (S¥).

Let w € C(Q1~T); define @ = w, the lift of w with respect to y, as

w(z) = wy(z) = {(w)y(:v) if z € N(y),

w(x) otherwise.
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We now prove the following properties (1)-(5):

(1) If wy, we are in S~, then max{w;,ws} € S~. This property follows
immediately from the definition of a Perron subsolution.

(2) Take w € S7, y € Q~Tand N = N(y) C Q~T. Then w = w, € S~.
Clearly, @ is continuous in QT limsup,_,r 2 < 0, and limsup,_,,, £ < 0.
Take y; € QT and Ny = N(y;). Let k be a function in C(N;), such that
w < h on §'Ny; we claim that w < (h),, in N;.

Since w € S, we see that w < {w), = win N, and as ¥ = w in Q\N,
it follows that w < @ in Q~NT. Set N, = NN Ny and N3 = N; N Ny; thus
N1 = NQ U Ng.

We have w < @ < hon 0’ Ny and w € S, hence w < (h)y, in Ny and therefore
w = w < (h)y, in N3. In particular, ® < (h),, on &Ny N N3. Furthermore, we
have @ < h = (h)y, on (0'Ny N N) C & Ny. Therefore,

Pw=P(h), = f in Ny,

and by the generalized maximum principle (Theorem 2.1), @ < (h),, in No. Thus
w < (h)yl in N1 = N2 U N3.

(3a) Let N be a neighborhood of the local solvability. If wt € C*(NNQ)NC(N)
satisfy

Pwt =Pw™ in NNQ, Bwt = Bw™ on NN (dQ~T), wt >w™ on &N,

then either w* = w™ in N, or else wt > w~ in N. This property follows from
the generalized maximum principle (Theorem 2.1).
(3b) If wt € S*, then w* > w™ in Q. Set

w™ wt
m = sup (T(y) - T(y))

We need to prove that m < 0. Suppose that m > (. Define

s={vea~r| g~y =m).

Let £ € T'U {oo}; then

- + - +
(4.3) lim sup (w—(y) - w—(g;)) < limsup w—(y) — lim inf w—(y) <0.
y—E v v y—E v =€ v
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Hence, for some R > 0, the set S is contained in the compact set Qg := QN Bpg,
and S NJdBr = 0. Consequently, there exists a sequence of {yx} € Qg such
that 2—(yx) — “;—J'(yk) — m. Take a subsequencg {yx,} which converges to yp.
It follows from (4.3) that yo ¢ . Hence yo € Qg ~(I' U dBR), and from the
continuity of w* and v in Qp ([ U 8BRg),

(w‘ wt

(¥0) = =~ (0)) = m.

v Y Ty
Thus, S C Qr (' UJBR) is a nonempty closed set.

We claim that S N (92 \T') # 0. Otherwise, there is a closest point y; in S to
Og. Since y; € Q, then Ny = N(y;) C @, and &' Ny = @N;. Let @F be the lifts

of w¥ in Ni. Define PPw = ﬂz_wz_ Now ¢¥ > 0, and

According to the weak maximum principle,

Fm S
W —w wT—w
sup ———— < sup (————) <m,
N1 v 8N, v +
and the strong maximum principle implies that either Z— — @Ui < m in Ny, or

- wt . . . : _
- _ 2 =min N;. Since w* is a Perron super(sub)solution, and @* = w* on

3N1, then

It follows that 2- — @vi = m in N and hence

p— + —_— _+
w w W w
—_ =m on dNy,
v

v
which contains points of S closer to 82 than y;, contradicting the definition of
Y.

Let y; € SNAQNT, and let wF be the lifts of w* in Ny = N(y;) € Q\T.
Define

B
vw) and B”w:va+ﬂ?9—l:.

P'w=Pjw+c’w=
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Now ¢¥, 8 are nonnegative, and v” > 0. Since

(W W .
P (—’U_ "—v )—0 mn Nl,
S ot
Bv(l—”_—“’—)=o on ON; N AR,
v v
T
1—"——w—§m on &' Ny,
v v

by the strong maximum principle and the Hopf lemma. for the operator Py,

52—t o =+
w w w W -
either — — — <m, or — — — =m in N;.
v v v v
From _ + .
w- @ w w
(-2 (5 - )w=m,
v v v v

it follows that 2 — % = m in N;. But then

P _,_+ B
B”(w——w) =+9"m = Z'm>0 on ION; NN,
v v

and this is a contradiction. Consequently m < 0, so w™ < w7 in Q.

(4) S* are not empty. Clearly 0 € S, and kv € St for k satisfying
k > max{|glo/0, |flo/d0}, where e = min{ Bv(z)| = € supp(g)}.

(5) Let N be a relatively open subset of Q\T, and let {ux} be a bounded
sequence of C2(N) N C(N) solutions of

Puy=fin NN, Bug=gonNNOoQ.
Then there is a subsequence {uy, } converging to a solution u of
Pu=fin NNQ and Bu=gon NN

The desired property follows directly from the up to the boundary weighted
Schauder estimate [14, Lemma 1] and the Arzela~Ascoli theorem.
We now define
u = sup{w| w € S™},

and prove that u is a C?(Q \T') solution of (4.2). By (4), S* are not empty. Take
w* € 5%, Let K be a compact set in Q \T. According to (3b), for every w € S~
we have w < wt in , and hence in K. Therefore, {w| w € S~} is a nonempty
bounded from above set in every compact set K, and u = sup{w| w € S™} is well
defined. Set y € QT and let {wy} C S~ be a sequence such that wy(y) — u(y).
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By replacing wy with @, = max{ws,w:} and using property (1), we obtain a
locally bounded sequence of Perron subsolutions. Property (2) implies that the
sequence {wy} of the lifts of Wy with respect to y is contained in S~. Moreover,
Wy, are locally uniformly bounded in 2, and w; < Wy < W < wt. In view of
property (5), {@x} has a subsequence {iy, } which converges in N = N(y) to a
function @ € C?(N) that satisfies

Po=fin NNnQ and Bw=gon NN

We have W, < u in N, thus @ < u in N. Note that @w(y) = u(y) (as wi(y) <
We(y) < u(y), and wi(y) — u(y)). We claim that @ = v in N. Suppose that for
some z € N, w(z) < u(z); then there exists wg € S~ such that @(z) < wo(z) <
u(z). By replacing Wy with W, = max{w,wo}, and taking the lifts and then a
converging subsequence, we obtain a solution 1w € C?(N) of

Po=fin NNnQ and Bw=gon NnNOo.

From our construction of 1, w < w in N and, in particular, on &' N, hence (3a)
implies that either @ < &, or @ = w in N. Since W, € S, we have @ < u and
therefore w(y) = u(y) > w(y). Consequently, w = w in N, which contradicts
w(z) < wo(z) < W(z). Thus, @ = w in N. Since y is an arbitrary point of Q \ T,
it follows that u is a C2(Q \T') solution of

Pu=finQ and Bu=gondQ~T.

Recall that 0 € S~, so u > 0. Since by our assumptions either Bu = g # 0 on
OONT, or Pu= f #0in , we conclude that u > 0in Q\T.

Now, let w € C%(Q) N C*Q~T) be a positive solution of (4.2). Clearly,
w € §*, hence u < w and u is the minimal positive solution of (4.2). ]

Definition 4.2: The solution, which was obtained in Theorem 4.1, is said to be
a Perron solution of problem (4.2).

From the minimality of the Perron solution we obtain

COROLLARY 4.3: The Perron solution of problem (4.2) depends neither on the
positive supersolution v € SHp(f)), nor on the system of neighborhoods

{N®)}yea~r-

We can use the Perron method to obtain a positive solution for the following
exterior degenerate mixed boundary value problem:
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THEOREM 4.4: Suppose that P and B are operators of the forms (1.1) and
(1.2) satisfying (1.3)-(1.5). Let K be a nonempty compact set in Q with a
smooth boundary, and let g € C(OK) be a positive function. Assume also that
SHp(2) £ @. Then there exists a positive Perron solution

u€ CHANKUD)NC((QNK)NT)
of the problem
(4.4) Pu=0inQ~NK, Bu=0o0ndQ~T', u=gondkK.

Moreover, u is the minimal positive solution of this problem, namely, if w is a
positive (classical) solution of (4.4), then v < w. In particular, u depends neither
on the supersolution v, nor on the system of the neighborhoods.

Proof: Note that although on 0K we impose the Dirichlet boundary condition,
we do not consider 9K as part of the singular set I, since it is a disjoint smooth
component of the boundary.

First, we prove the solvability of problem (4.4) under the stronger assumption
that there exists v € SHp(Q2) such that Bv > 0 on QT

Set = Q~NK. We say that (4.4) is locally solvable if for each
y € ' U (0Q~T), there is a relatively open subset N = N(y) of Q' U (902 ~T)
with y € N and N N (T U8K) = 0, such that for every h € C(N) there is a
unique solution (h), € C2(N)NC(N) of

(4.5) Pu=0in NNQ, Bu=00on NNoQ, and u=h on &N,

where N = ON N Q. A Perron subsolution of (4.4) is w € C(¥ \T)
satisfying
limsupE <0, limsupE <0, w<gondkK,

S N z—300 U
and for each y € Q' U (0QNT), if w < h on &'N(y), then w < (h)y in N(y). A
Perron supersolution is defined similarly. The set of all Perron subsolutions
(supersolutions) of (4.4) is denoted by S~(Q') (SH(Q)).
As in Theorem 4.1, one can prove that

u(z) = sup{w™ (z)| w™ € S7()}

is a C2(Q (K UT)) solution of (4.4). Note that for every y € dK and w* €
S*(Y) we have

() - L) < L - L) =o.

v
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Furthermore, since 8K is smooth, by a standard local barrier argument, u satisfies
the boundary condition on 9K.

Suppose now that Bv > 0 on 9Q ~T'; we use the first part of the proof and
solve the sequence of problems:

(4.6) Pu,=0in QNK, (B+1/k)ury=00n0Q T, wu,=gondkK.

Since Cv > g on 8K for some C > 0, the sequence {uy} satisfies 0 < up < Cuv.
Hence, {u} has a subsequence converging to a solution u of (4.4). Note that the
condition © = ¢ > 0 on 3K implies that u is positive on QN K.

It remains to prove the minimality of u. If w is a nonnegative solution of (4.4),
then w € S,;" of problem (4.6). Hence, ux < w and therefore v < w. |

PROPOSITION 4.5: 1. Let N be an open set in Q, y € NNT, v € SHp, and u
be the Perron-solution of (4.2) or (4.4). Then
lim v(z)=0 = lim u(z)=0.

Ty Ty

zeNNT zeN~T

2. Suppose further that v € C(N), and v(y) = 0 for every y € N NT. Then
i € C(N), where
. Julz), xeQT,
“(w)_{o, ze NNT.
Proof: 1. Take w € S~. For k sufficiently large, kv € S, hence w(z) < kv(z)
in N \T. Recall that 0 € S—. Therefore,

0 < u(x) = sup{w(z)| w € S7} < kv(z) in N\T.

Since lim wv(z) =0, it follows that lim wu(z)=0.
ar:ez]%’i r zGZI‘:J’i r

2. Let y € NNT, and take x, — y. If {zn} C N\T, then by part 1,

lim,, L, @(z) = lim,,,u(z) = 0. On the other hand, if x, € N NT, then

ii(x,) = 0, and lim,, ,, %(x) = 0. Thus, @ is continuous in N. |

5. The generalized principal eigenvalue

The aim of this section is to generalize the notion of the (classical) principal
eigenvalue to our problem, and to study its properties. To this end, we prove
that the sets S = {t| Hp, () # 0} and {t| SHp, () # 0} are equal by showing
that the existence of a positive supersolution implies the existence of a positive
solution of the homogeneous degenerate mixed boundary value problem.
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Definition 5.1: Let P, = P —tW, t € R. The generalized principal eigen-
value )\q of the boundary value problem

Pou=finQ and Bu=gondQ~T
is defined by
(51) Ao = Ao(ﬂ, P W, B) = sup{t S R' ,Hpt(Q) # 0},

where Hp is defined by (1.8).

THEOREM 5.2: Let P and B be operators of the forms (1.1) and {1.2) satisfying
(1.3)-(1.5). IfQ is bounded, suppose further that T # . Let SHp(2), SH%(),
Hp(2), and H%(Q) be the sets as defined in Definition 1.2. Then

{t € R| SHp(Q) # 0} = {t € Rl Hp, (@) #0) =

{t € R| SHO,(9) # 0} = {t € R H2,(©) # 0},
Proof: It is obvious that

{t] Hp, () # 0} C {t| Hp, () # 0} C {t| SHp,(Q) # 0},

and
{t] Hp, () # B} C {¢] SHp,(Q) # 0} C {t| SHp, (D) # 0}.

Therefore, it suffices to prove that
{t] SHp () # 0} C {t| H,(2) # 0},

Suppose that SHp, () # 0. Take {px} a sequence of points in Q which
converges either to p € T' (if I' # @), or to infinity (if Q is unbounded). Set
er = min{1/k, 1 dist(px, 8Q)}, and By = Bk, (px).

By Theorem 4.4, there exists wy € C2(2) N C1(Q\T) that satisfies

(6.2) wp >0, Paw,=0inQ2~By, Bwy=00nd0~T, wy=1o0ndB,.

Fix z1 € Q@ Jpo,; B and define v (z) = wi(x) /wi(z1). Using the local Harnack
inequality and the interior Schauder estimate, we infer that

|vk|2,0:67 < Cloklo,x = CME,

for every K' CC K cC Q.
Let K be a compact set in Q \T' such that K N Q # 0. Recall that By, = 0
on K N 9. By the local and up to the boundary Harnack inequalities [3], and
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the up to the boundary weighted Schauder estimates [14, Lemma 1], there exists
a positive constant Ng such that for every & large enough,

lvklé‘ff,;;( < Clvgo;x < CNk-.

Using the Arzela—Ascoli theorem for {v; } and its derivatives up to order 2, and
by applying the diagonal method, we may extract a subsequence which converges
in every relatively compact subdomain of Q \T to a function vy which satisfies

v >0inQ, Puy=0in, and Byyg=0o0ndQ~T.

Therefore, vy € HP, (). Thus, {t| SHp, () # 0} C {t| HE,(Q) # 0}. ]

Remark 5.3: Under some assumptions, the solution vy € ’H?;2 that was con-
structed in Theorem 5.2 satisfies the homogeneous Dirichlet boundary condition
on Lipschitz portions of I'. More precisely, let N be an open set in §2, such that
N NaQ C I' \{p}, where p is the boundary point in the proof of Theorem 5.2.
Suppose that I'N N is a Lipschitz portion of dQ. Take ug € SHp, and suppose
that ug € C(N), and ug(y) = 0 for every y € I' N N. Then 9y € C(N), where

- _ Jwolx), zeQNT,
”O(x)“{o, reNnT.

Indeed, let {vx} be the normalized sequence that converges to vp in the proof
of Theorem 5.2. Fix y € ' N N and let Bg,.(y) be a ball contained in N. By
Proposition 4.5, the extended functions #(x) are in C(Bg,(y) N Q). Recall that
Py = 0 in Bs-(y) N Q and ¥, = 0 on Bg.(y) N9 C I'. According to the
boundary Harnack principle [5], there exists C > 0 such that for every £ > 1 and
every z € B.(y) N,

v1(x) vk (20)

vk(x) <C ’01(.’80)

1

where zo € 0B,(y) N Q. The sequence {vx} is locally uniformly bounded in €2,
in particular, M~! < () < M. So vg(x) < Cvi(z) and 0 < vo(z) < Cvy(x).

In view of Proposition 4.5, l% ¥1(x) = 0, therefore, ll_I)I% Bo(z) = 0. Thus, ¥y is
_ z€N TEN
continuous in N.

PROPOSITION 5.4: Let Q be a smooth bounded domain and I = () (the regular
oblique derivative problem). Then

{t] Hp.(Q) # 0} = {t] SHE,(Q) # 0} = {t]| SHP,(Q) # 0}



Vol. 132, 2002 POSITIVITY OF SOLUTIONS 147

Proof: Clearly,

{t] SH, () # 0} C {t] SHp,(Q) # 0},
{t] Hp, () # 0} C {t| SHp, () # 0}

We need to prove the opposite inclusions. Suppose that there exists
u€SHp, ™ S?{?;t. We assert that S’H?;t # (. By the generalized maximum prin-
ciple (see Remark 2.2) and Hopf’s Lemma, « > 0 on 2, therefore, for k = 1,2,.. .,
we have

(Po+1/k)u>6,>0mnQ, (B+1/k)u>e, > 0ondf.

Take f € C§(Q) such that f 2 0. According to Theorem 4.1, there exist positive
solutions wy of the problems

(Pe+1/k)ywe = finQ, (B+1/k)wx =0 on 0.

We distinguish between two cases:

(a) Suppose that {w;} is not locally uniformly bounded; then there exists
xg € Q such that wi(z9) = 00. Define wy(z) = wi(x)/wk(zg). By a standard el-
liptic argument, there exists a subsequence {wy} that converges to a nonnegative
function w € C%(2) N C1(2) which satisfies

Pw=0inQ, Bw =0 ondN.

Since w(wp) = 1, it follows that w > 0 in  and w € HY, (Q).

(b) Suppose that {wg} is locally uniformly bounded. It follows from the
Schauder estimates and the Arzeld-Ascoli theorem that {w;} has a subsequence
that converges to a nonnegative function w which satisfies

Pw=f20in, Bw=0ondMN.

By the maximum principle, w > 0 in Q. Thus SHP, # 0.
Similarly, if u € SHp, ~ Hp,, take g € Cy*(892), g 2 0, and k > 1. By solving

(P,+1/k)og =0in Q, (B+1/k)v, = g on 99,

and repeating the above argument, we deduce that Hp, # 0. Thus, these three
sets are equal. 1
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Remark 5.5: For the regular oblique derivative problem (and for the Dirichlet
problem) in a smooth bounded domain, and for W > 0 in Q, we only have

{t] Hp,(Q) # 0} C {t| Hp,(Q) # 0}

Indeed, by [2, Theorem 4.3, if W > 0in Q, then {t| H$, # 0} = {A§}, where A§ is
the classical principal eigenvalue. Moreover, by [2, Theorem 4.4] and Proposition
5.4, 8 = {t| SHp, # 0} = (—0o0, A§).

Remark 5.6: If there exists a constant m € R such that ¢ — mW > 0, then
Ao(Q, P,W, B) > m. Clearly, the assumption ¢ — mW > 0 implies that for any
positive constant k,

(P-mW)k=(c—-mW)k>0inQ and Bk>0o0ndQ~T.

By Theorem 5.2 and Proposition 5.4, Hp_ (§2) # 0. Hence Ao > m.

6. The set S = {t € R| Hp, () # 0}

In this section we show that the set

(6.1) S=S(Q,P,W,B)={t € R Hp,(Q) # 0}
is a closed convex set. First, we need two auxiliary lemmas:

LEMMA 6.1: If SHp # O, then for each Ty € §) there exists a positive function
w € C2 2~ {20}) NCY(Q ~({z0} UT)) such that

Pw=0in Q2~{zo}, Bw=0o0ndQ~T.
In other words, w € H% (2~ {zo}).
Proof: Suppose that SHp # 0. Take z9 € Q. For 0 < ¢ < &g, let B; be a ball

centered at xg such that B, CC Q. By Theorem 4.4, for each 0 < € < &y, there
exists a positive minimal solution u. of the boundary value problem

Pu=0inQ~NB,, Bu=0ondQ~T, u=1ondB..

Take z; € O\ B,, and define w,(z) = u.(x)/us(x1). Using the local and up to
the boundary Harnack inequalities, we infer that w, are uniformly bounded in
compacts of 2 \(T'U {xo}), and by a standard elliptic argument (as in Theorem
5.2), there exists a subsequence, denoted by {w,, }, that converges as e, — 0 to
w which is a positive solution of

Pw=0in QN{xo}, Bw=00ndQ~T. 1
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LEMMA 6.2: Suppose that there exists a positive function w € HE (2 ~{xo}) for
some o € §). Then Hp(Q) # 0 and

(6.2) w = aGE(-,zo) + 1,

where « is a nonnegative constant, GB (-, zo) is the minimal (Dirichlet) positive
Green function of the operator P in ¥ with a pole at xo, and w € Hp(§2) U {0}.

Moreover, if a = 0, then w € H%(2), and if & > 0 and QT # 0, then w €
Hp(S) NHE(Q). The case in which & = 0 may occur only for the (generalized)
Dirichlet boundary value problem (9Q =T).

Proof: 1If limsup,_,,, w(x) < o, then using [10], w has a removable singularity
at xp, and we obtain (6.2), with o = 0 and with @ which is the continuous
extension of w. In this case w € H%L(Q).

Otherwise, take an increasing sequence {§2}%2, of smooth bounded domains
that exhausts 2 such that Q, CC Qxq1 CC Q, and 2 = Uzo:] Qr. It follows
from [24] that

wla, ~{zo} = @ GH, (- T0) + wk,

where a; > 0, ng (z,zq) is the positive minimal Green function of the Dirichlet
boundary value problem in , and wg > 0 satisfies Pwy = 0 in Q, and wy, = w
on d§);. Hence, for a subsequence k, — oo, we have

w=aGZ(,xo)+® inQ,

where o is a positive constant and @ > 0 satisfies P = 0 in €.

Obviously, if 92 = T (the generalized Dirichlet problem), then either w = 0,
or w € Hp(Q) = HL(Q). Note that in both these cases Hp # 0, since for the
generalized Dirichlet problem, it is well known that the existence of the positive
minimal Green function G5 implies that Hp # 0.

Suppose now that QT # 0. Then G5 (-, z¢) = 0 on QT and, by Hopf’s
Lemma, BGE(-,x0) < 0 on Q2 ~T. On the other hand,

0 = Bw = aBGY(-,x0) + B on dQT.
Since a: > 0, it follows that Bw > 0. Consequently,
w>0, Po=0,in§, and Bw>0 ondQ2~\T.

Thus, @ € Hp N HS. [ ]
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LEMMA 6.3: The set S is a closed interval.

Proof: For the case where I' = 9 (the generalized Dirichlet problem), this
result is known (see [23]). Our proof is quite similar and covers also this case.

CLoSEDNESS: If {tx} is a sequence in S that converges to to, then by Lemma
6.1, there exists a sequence of normalized positive solutions wy, of the problem

P,wr,=0 inQ~{xzo}, Bwr=0 ondQ2~T.

By standard elliptic arguments, there exists a subsequence of {wy} that converges
to a positive solution w of the problem

Pow=0 inQ~{zp}, Bw=0 ondQ~T.

According to Lemma 6.2, Hp, (2) # 0 and S is closed.

CONVEXITY: Let ty,t; € S. For any 0 < a < 1 denote by ¢, the convex
combination t, = at; + (1 — a)ty. Let uy € Hp,, and u; € Hp, , and set
Uq = (up)'~*(u1)*. We claim that u, € SHp, . Indeed,

P, u, =(1- a)ua(uo)'lptou() + aua(ul)_lPtlul

Uy 2 Z Ug ) Ug
(6.3) +a(l — a)ua(u—o) ;:: azj&-(u—l)aj (a) >0,
(6.4) Bug =(1 — @)ug(uo) " Bug + aug(uy) ! Buy > 0.

Therefore, u, € SHp,_ (2). By Theorem 5.2 and Proposition 5.4, we deduce that
Hp, () # 0, and S is convex. Note that if Py, # P, or, more generally, if ug
and u; are linearly independent, then u, € SHp, () ~Hp, (Q). ]

Remark 6.4: Lemma 6.3 can be slightly extended. Let Hp, B, be the set

Hp,p, = {ue€ CHQUCHANT)|u>0inQ,
Pou=0in Q and Byu > 0 on 02 N\T'},

where Byu = tyu + 3%, and define S ={t>0| Hp, B, # 0}. Then, as in the
proof of Lemma 6.3, it can be shown that S is a closed interval.

LEMMA 6.5: 1. If SHp # 0 and W 2 0, then S = (—00, Ag), where 0 < Ao < 00
is the generalized principal eigenvalue.
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2. If SHp # O and W changes its sign in €}, then S is the bounded interval
[A=, Ao], where A_ :=inf{t € S}, and —o0 < A_ <0< Ag < 0.

Proof: 1. Let
Sh .= {t € R| u; > 0 s.t. Pouy = 0in Q}

be the corresponding set for the generalized Dirichlet problem (I' = 99Q).
Obviously, S € SP. It is known that SP is bounded from above (see [21, the-
orem 4.4]), therefore S is bounded from above. Since 0 € S, it follows that
0 < Xp =supS < oo. By Lemma 6.3, S is a closed interval, hence there exists
uy € ”pro. For every ¢ < Ag, we have ug € SHp,. According to Theorem 5.2
and Proposition 5.4, Hp, # 0. Hence S = (—0o0, Ag).

2. By Lemma 6.3 and our assumptions, S is a closed nonempty interval. Recall
that S C SP. In addition, S? is a bounded set [21, theorem 4.7). Therefore, S
is the closed bounded interval S = [A_, \g]. |

7. Basic properties of )q

With the aid of the preceding section’s results, we obtain various properties of the
generalized principal eigenvalue. In particular, we wish to show that in regular
problems, the generalized and the classical principal eigenvalue are equal. We
also show the continuity, convexity and monotonicity of Ag.

LEMMA 7.1: Let Q be a C?-bounded domain. Assume that P is uniformly
elliptic in , the coefficients of P are in C*(Q), and W € C*(Q) is a posi-
tive function. Suppose that there exists a classical principal eigenvalue A with
classical principal eigenfunction u§ € C?(§2) N CH(INNT) N C(Q) satisfying

71 Puf = AjWug in Q, Bui=00ndQ~T, uj=0o0nT.
0 = Ao 0 0

Then A§ = Ao.

Proof:  As u§ € Hp,.(2), it follows that A§ < Ag. Suppose that A§ < Ag. Take
o
A§ <t < Ap and u; € Hp,(2). Then u; > 0 satisfies

Preus = (t—A)Wus >0in 82, Bu; > 0on QT
By Lemma 2.3, there exists @ € C2(2) N CY{(2~T') that satisfies

igfﬂ>0, Pyeu>0in 2, Bu>0ondQ~T.
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We use the e-maximal method. Denote £ = sup{e > 0| — cu§ > 0}, and let
@ =4 — gou§. Clearly, 0 < g9 < oo. It follows that

@>0, Pgi>0inQ, Ba>0ondQ~T,

which implies that & > 0 on Q@ \T'. Moreover, liminf,_,r @ > 0, hence infq @ > 0.
By replacing @ with i, we have e; > 0 such that 4 — gu§ > 0, which contradicts
the maximality of &q. ]

Next, we establish the uniqueness of the Zaremba boundary value problem.

LEMMA 7.2: Let Q be a C?-bounded domain. Assume that P is uniformly
elliptic in © and that the coefficients of P are in C*(Q). Suppose that u €
C%(Q) N CY(Q\T) satisfies

(7.2) u>0in€), Pu>0inQ, Bu>0ondQ~T.
Ifv e CHQ)NCHQNT)NC(Q) is a solution of
(7.3) Py=0inQ, Bv=00ndQ~T, and v|r=0,

then v = 0.

Proof: By Lemma 2.3, there exists & € C%(Q2) N C'(Q ~T) which satisfies
igfﬁ >0, Pa>0in, Bua>0ondQ~T.

Take v that satisfies (7.3). Suppose on the contrary that there is a point zo € 2
such that v(zo) > 0. We use again the e-maximal method. Define

go =sup{e > 0|t —ev > 0 in Q}.
Clearly, 0 < g9 < 00. Set w = @& — £gv; we have
w>0inQ, Pw=Pa>0inf), Bw=Bu>0o0ndQ2\TI,

and liminf, ,r w = liminf, ,r @ > 0 on I'. By the generalized maximum prin-
ciple and Hopf’s lemma, w > 0 on Q~T. Hence infow > 0. Therefore, by
replacing 4 with w, there is a positive £, such that w — eqv > 0 in €, which
contradicts the definition of £9. Consequently, v = 0 as required. |
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Remark 7.3: The assumption that € is bounded is essential for the uniqueness
(see Theorem 5.2). The requirement that v|r = 0 is also essential even if " is a
singleton, as shown recently by G. M. Lieberman [16].

Under some assumptions, the principal eigenfunction for the degenerate oblique
boundary problem is unique. First, we need the following:

LEMMA 7.4: Suppose that Q is a C*-bounded domain and let w,v € C*(Q)
satisfy w,v > 0 in Q\T, ‘Z—‘j,% <0onT,and w,u=0o0nT. Then 2 € Cc(Q)
and ¥ > 0 in Q where, on ', £ js defined as ¢ /2.

v

Proof: By dividing the Taylor polynomials of the functions w and v, the proof
is immediate. 1

LEMMA 7.5: Assume that § is a C?»®-bounded domain. Let P be a uniformly
elliptic operator in Q with C®(§) coefficients, and

Bu=y{au + Blz) o

a degenerate oblique boundary operator defined on 9Q with C1:*(09) coefficients
such that 3, > 0, and 8+7 > 0. Letw,v € C>*(Q)NCYQ) be positive solutions
of the problem

Pu=0 inQ), Bu=0 ondq.
Then w = ggu, where gq is some positive constant.
Proof: Set I' = {x € 3Q|8(x) = 0}. Clearly, w and v fulfill the requirements
of Lemma 7.4, therefore £ € C(f2) and Z>0o0n Q. Consequently, there exist

ko, k1 such that 0 < ko < ¥ < k; < 0o in (). Using again the e-maximal method,
we conclude that w = gpv. |

Next, we study monotonicity, continuity and concavity properties of A\g as a
function of the coefficients of P and B, and of the domain €.

LEMMA 7.6: (1) For i = 1,2, let Q; be a domain in R*, T'; a closed subset of
0Q;, and 02 ~T; a C?*-portion of dQ;. Assume that

Ql g Q?v an \Fl g 692 \FQ &Ild BQI391 I, = Bl-

Then A2 < A}, where Ay := \o(Q, LW, B;), i =1,2.
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(2) Suppose that Q is unbounded. Let {}32, be an increasing sequence
of bounded domains such that Uje, % = Q. Denote 8'Q = 90 NQ and
Iy = (F N o) U &' Q.. Assume that

UQ%=0 QccQi, (0% N0%) C(0%41>0'Qyr).
k=1

Let By, be given boundary operators on d§, ~T'y, and suppose that for k > 1,
Bryilaq,~r, = Br. Then M — )Xo, where A§ = XAo(Q%, P, W, By) and A9 =
Ao(2, P, W, B).

Proof: (1) Clearly, Hp, B,(Q2) C Hp, B, (1), thus A2 < AL,
(2) According to part (1), Ao < AF and {\} is a decreasing sequence. Therefore
Ao < A= limgoseo AE.
First, suppose that A < co. In the light of Theorem 5.2 (note that I'y, # @), for
each \f there exists a normalized solution uf € 'H(};ﬂc (Q%). The sequence {uf}
(4]

contains a subsequence converging to a function ug € H(I)’x (Q). It follows that
A < Ag. Hence A = limg_,00 AX.

If A = oo, then /\2 = oo for every k > 1. It follows from Theorem 5.2 that for
every A > 0, there exists a normalized function uz x € H% (Q). The sequence
{uk, 2} has a subsequence converging to uy € ’H% (€). Since A is an arbitrarily
large number, it follows that Ay = oo. ]

Remark 7.7: (1) We note that for the Neumann boundary value problem, A is
not a continuous function of the domain in the usual sense (see [7]).

(2) If Q is bounded and I' = §, then in general, the standard monotonicity of
Ao with respect to the domains does not hold true, as we show in the following
example (see also [7]).

Example 7.8: Take Q; = B1(0), Q3 = B3(0), P = —A +V, where V|g, =0,
Vig,~q, >0,and B= 2. Then Ap(§) = 0, but Ao(Qs) > 0.

LEMMA 7.9: (a) Suppose that ¢1 < ¢z, 71 < 72, B1 > B2 and denote
P=Pte, Bi=yitfim and X=Xo(@ P, W5y,
14

for i = 1,2. Then A2 > A{.

(b) Ao is a concave function of the coefficient c.

(c) Let {cx}3%, and co be C2 (@ ~T) functions such that |cilo.or < M () for
every  cC Q~T, and cx(z) = co(x) for all z € QNT. Set P, = P+ ¢, and
AE = A\o(Q, P, W, B), k > 0. Then limsup,_,, A§ < AJ.
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(d) fW > 0 and
ck(z) — co(x)
W(.Z‘) 0;Q2

then Af — A3. Moreover, )\ is a Lipschitz continuous function of ¢ with Lipschitz

— 0,

constant 1 with respect to the norm ||| ||| := | ]o;0-

Proof: (a) Clearly, Hp, _xiw,, (£2) C SHp,_xiw,,(€2). By Theorem 5.2 and
Proposition 5.4, 'sz_Afl)W,Bz # 0, and consequently A2 > Al.
(b) For 0 < & € 1, denote

Pa :P+ac1+(1—a)00 and )\8 =AO(97PO¢7W’B)‘

Let u; € Hp,_xiw, where i =0,1. Set uq = (ug)'~*(u1)®. As shown in Lemma
6.3, [P — (@] + (1= a)A)W]uy > 0 and Bu, > 0. Hence A§ > aAd+(1—a) .

(c) Let A := limsup,_,,, A5. By taking a subsequence we may assume that
Ak — X. We wish to prove that A < AJ.

Suppose first that A < o0 According to Lemma 6.1, there exists a normal-
ized sequence of positive solutions uy € H(I),k_ /\SW(Q ~{zo}). As ¢y are locally
uniformly bounded, by standard elliptic arguments, the sequence {uy} has a
subsequence converging to & € H(}’,O_ XW(Q ~{zo}). Lemma 6.2 implies that
Hp,_sw () # 0. Hence, X < AJ,

If X = oo, then for every A > 0 there exists ky such that Hp,_ w # 0 for every
k > ky. It follows as above that Hp,—aw (2) # 0. Inasmuch as ) is an arbitrarily
large number, it follows that A = co.

(d) If | %55 0,0 — 0 and W > 0, then for every 0 < ¢ < 1 there exists k. such
that for every k. < k € N,

Co—€WSCk§CO+€W

Now let uy € prk, k > 0. Then for k > k.,
0

(Pr — (A} — e)W)ug > (Po — AJW)up =0 in Q,
and
(Po— (M —e)W)uy, > (Py = AMEW)up =0 in Q.
It follows that
A —e <A <A 4,

for every k > k.. Therefore, limj_,,, Ak = AQ and )¢ is a Lipschitz continuous
function of ¢ with Lipschitz constant 1. |

Similarly, we show that Ag is a monotone, continuous function of W.



156 Y. PINCHOVER AND T. SAADON Isr. J. Math.

LEMMA 7.10: (a) Suppose that Wy < W and denote Ay = \o(, P,W;, B) for
i=1,2. If SHp(Q) # O, then Ay < A\}. On the other hand, if W; > 0 and
SHp(R) =0, then A3 > Al

(b) Let {Wi}2, and W be C2 (2 \T) functions such that Wi(z) — W (x)
for every x € , and [Wilo.r < M(S), for every ' CC QNT. Denote by
M= Ao(Q, P,Wk, B) and Ao = Ao(2, P,W, B). Then limsup;_,., Ak < Ao.

(c) IfW > 0 and |%;—)) — 0.0 = 0, then A — Aq.

Proof: (a) Suppose that SHp(2) # 0. Clearly, \j > 0 for i = 1,2. It follows
that SHp_xzw, (@) C SHp_xzw, (?). Hence A3 < A.

On the other hand, suppose that W; > 0 and SHp(Q) = 0. It follows that
Ay <0fori=1,2, and SHp_xw, () C SHp_xaw,(©). Thus, Ad < AR

(b) Assume first that A := limsup,_,,, AX < co. By taking a subsequence, we
may assume that Ak — X. Since Hp_ MW, F @, it follows as in Lemma 7.9 that
Hp_sw # 0. Thus, X < Xo.

Suppose now that X = o00. We may assume that A\ — oo. Then for every
A > 0 there exists ky such that Hp_xw, # @ for every k > k). It follows that
Hp_w(Q) # 0, which implies that Ay = oo.

() W > 0 and |%& — 1jo;o — 0, then for every 0 < ¢ < 1 there exists k.
such that for every k. < k € N,

0< (1-e)W < W, < (1+e)W.

Now let ug € HPAO' Suppose that Ag > 0; then

Ao Yo o
(P- 1+6Wk)uo > (P- 1+E(1+€)W)uo =0 inQ.
Hence, ﬁ"g < Ak for every k > k.. Similarly, if A < 0, then 22 < A for every
k > k.. Consequently, Ay < liminfy_,oo A§ and limy_,00 A = Ag. [}

COROLLARY 7.11: Fix a singular set I' C 9. Assume that ¥ is the conormal
direction. Let AY, o and A} be the generalized principal eigenvalues of the
Neumann problem (y = 0), the generalized mixed boundary value problem, and
the generalized Dirichlet problem (T'P = 95)), respectively. Then

M <A <A

We conclude this section with the following Protter—Weinberger type varia-
tional principle for Ap (see [19]).



Vol. 132, 2002 POSITIVITY OF SOLUTIONS 157

THEOREM 7.12: Suppose that P and B are operators of the forms (1.1) and
(1.2) satisfying (1.3)~(1.5). Let W € C*(Q~T), W > 0 in Q, and let

(7.4) K=K®Q)={ueC*(QnCHO T)|u>0inQ\T,Bu>0}.
Then

Pu
(7.5) Yo = Xo(Q, P.W, B) = sup inf {Wu}

Proof: Let u € Hp, . Then u € K, and for every z € Q, Ao = 2 (z). Hence

Pu
<
) o <o o ()

Let u € K and denote u = infmeg{W—Z}. If 4 = —o0, then obviously p < Ag.
Otherwise, the fact that g < % in Q implies that u € SHp,(£2). Therefore
p < Ag. Soinfeeq {%} < X for every u € K. Consequently

Pu
) o 2 A} <o

Combining (7.6) and (7.7), we obtain (7.5). |

Remark 7.13: Suppose in addition to the assumptions of Theorem 7.12 that W
and the coefficients of P are in C(f2), and the following slightly stronger version
of the Protter—-Weinberger variational principle holds true:

Pu
7.8 Ao = fo—2=.
( ) 0 u€KS:CP2(Q) leEIQ { Wu }

Then as in [19], one obtains the following Donsker—Varadhan variational principle

Ao = inf /
HEM (D) ue;’CﬂC2{Q)

where M () is the space of probability measures on €. Note that if 9Q € €22,
[ is either empty or a smooth closed manifold of dimension n — 1, and W and
the coefficients of P are in C*()), then (7.8) holds true.

8. Criticality theory

This section defines critical, subcritical, and supercritical operators, and also
examines various criteria for these cases. First, we define a positive solution
of minimal growth at infinity in © with respect to (P, B). This notion was
introduced by S. Agmon [1] for the generalized Dirichlet problem.
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Definition 8.1: (a) Let K be a compact set in 2. The set 2~ K is called a
neighborhood of infinity in Q.

(b) Let @\ K be a neighborhood of infinity in 2. By the sets SHp g(Q ™ K),
Hp (2N K), Hp (2N K), we mean the corresponding sets of positive (su-
per)solutions in Q~ K, where we consider K as part of the singular set of
Q™ K). For example, u € H} (2~ K) if

v>0inQNK, Pu=0mQ~NK, and Bu=0onoQT.

(c}) A function u € H(},,B(Q\K ) is a positive solution of the opera-
tor (P,B) of minimal growth at infinity in € (in short, positive solu-
tion of minimal growth), if for every smooth K CcC K’ CC §? and for every

w e SHpp(QNK')NC((2~ K')NT), satisfying u < w on dK’, we have u < w
in QN K.

Remark 8.2:  Clearly, u € H} g(Q ™ K) is a positive solution of minimal growth
at infinity in © if and only if for every smooth K ¢C K’ cC Q and w €

SHpp(Q~NK')NC(Q~K')NT) there exists C > 0 such that v < Cw in
QNK'.

Next, we define the ground state and the Green function.

Definition 8.3: (a) A positive solution u € H$ 5(€2) of minimal growth at infinity
in Q is called a ground state of the operator (P, B) in .

(b) Let y € §, and let GlD?e () (%> 2) be the minimal positive (Dirichlet) Green
function of the operator P in B.(y), for some B.(y) C Q. A positive solution
uy € MY (2 ~{y}) which has a minimal growth at infinity in  and satisfies

lim —n¥ (2)

=1
ey ng w (% Y)

is called a Green function of the operator (P, B) in  with a pole at {y}. We
denote it by Gg’B(x, y), or simply GE(z, y).

We are ready now to generalize the definition of subcriticality which was
introduced in [18, 21, 29] for the generalized Dirichlet problem.

Definition 8.4: We say that (P, B) is a critical operator in § if (P, B) has a
ground state. The operator (P, B) is subcritical in Q if SHp p(Q) # 0, but
(P, B) does not admit a ground state. The operator (P, B) is supercritical in
Qif SHp () =0.
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THEOREM 8.5: Suppose that SHp(2) # B, and let K be a smooth nonempty
compact set in ). Then there exists a positive solution in D = QK of the
operator (P, B) of minimal growth at infinity in Q.

Proof: According to Theorem 4.4, there exists a positive Perron solution ug of
the problem:

(8.1) Pug=0inD, Buy=00n0Q~T, and up=1onoK.

We claim that ug is the desired solution. Let K CcC K' cC Q and denote
D' =QNK'. Let w € SHpp(Q~K')NC(D'~T), satisfying ug < w on 9K".
We need to prove that ug < w in D',

Consider the degenerate mixed boundary value problem:

(8.2) Pyu=0inD’, Bu=00ondQ~T, and u=uyondK’

Let S*(D) and S*(D') be the sets of Perron supersolutions (subsolutions) of
problems (8.1) and (8.2), respectively. By Theorem 4.4, we may assume that the
system of neighborhoods of local solvability of problem (8.2} is a subset of the
corresponding system of neighborhoods of problem (8.1). Moreover, we may also
take the same reference positive supersolution v € SH p(?) for the two problems.

We claim that S~(D) C S~(D’). Take w™ € S~(D); clearly, limsup £~ < 0
on I' and at co. Since ug is the supremum of Perron subsolutions in S~ (D), it
follows that w™ < ug on OK’. Let y € D’ ~(T' UAK'). As the neighborhood
N = N(y) of local solvability in D’ does not intersect 3K’, if w~ < h on &N,
then w™ < (h)P = (h)Y" in N, where (h)P and (h)D" are the local solutions for
the problems (8.1) and (8.2), respectively. Hence, w= € S~ (D').

For each w® € S*(D’'), we have w~ < w™, therefore it is enough to show
that w € ST(D’). Evidently, liminf(w/v) > 0 on ' and at co. To see that
w is a Perron supersolution, we consider again y € D'~N(TUJK') and N =
N(y). Let h be a continuous function such that w > h on ' N. Inasmuch as
N{y)N(CUBK') = 0 and (h), = h on &N, we have

Pw > (h)yin N, Bw > (h)y on NN (dQ~T), w > (h), on &'N.
Thus w > (h)y in N(y), and w € SH(D’). Hence w > w™ in D', for all w™ €

S5=(D’). In particular, w > w~ for all w™ € S~(D). Consequently, w > uq in
D, ]
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Remark 8.6: It can be easily shown that the Perron solution for problem (8.2)
is equal to ug.

THEOREM 8.7: Suppose that SHp(Y) # . Then for every y €  there exists
w € HY(Q~{y}) such that w is a positive solution of minimal growth at infinity
in Q.

Proof: Let w € H% (2 ~{y}) be the positive solution which was constructed in
Lemma 6.1. We claim that w is the desired solution. Let K CC €2 be a smooth
compact set such that y € intK, and u € SHp(Q2~ K)NC(Q N K \T). Since the
sequence of positive solutions {w, } of the proof of Lemma 6.1 converges uniformly
on 0K to the continuous function w, it follows that w. are uniformly bounded
there. As u > 0 on 0K, there exists a positive constant k such that for every
€ >0, w, < ku on K. By Theorem 8.5, w. are positive solutions of minimal
growth, and w,(z) < ku(z) in @~ K. Letting ¢ — 0, we obtain w(z) < ku(z) in
QNK. [ |

Our aim now is to prove in several steps Theorems 1.3 and 1.4. Since these
theorems are known to hold for the generalized Dirichlet problem, we will assume
in the sequel that I # 9Q. First we prove the following lemma.

LEMMA 8.8: If dimSHp =1, then SHp = ”H‘,);. In particular, dim?—l(}) =

Proof: Suppose that SHp = {Cv|C > 0}. By Theorem 5.2 and Proposition
5.4, SHY # 0 and Hp # 0. It follows that

SHY = Hp = {Cv|C > 0}.
Therefore, Bv = 0 on QT and Pv = 0 in Q. Consequently, v € H$. |

THEOREM 8.9: The operator P is critical in  if and only if dimSHp = 1.

Proof: Assume that P is critical and let uy be a ground state. Suppose that
w € SHp and let K be a smooth nonempty compact set in 2. Take C > 0 such
that ug < Cw on K. As ug is of minimal growth, it follows that uy < Cw in
QN K. By the generalized maximum principle, we infer that up < Cw in K,
and hence in Q. Using the e-maximal method it follows that w = e;uo for some
€1 > 0, which implies that dimSHp = 1.

Suppose that dimSHp = 1. Lemma 8.8 implies that

(8.3) SHp =H% = {Cv|C > 0}.
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We claim that v is a ground state. According to Lemma 8.7, there exists a
positive function w € H% (2 ~{z¢}) which is of minimal growth at infinity in
Q. Furthermore, by Lemma 6.2, we have w = aGE(-,x¢) + W, where « is a
nonnegative constant, G5 (z,y) is the Green function with respect to the gener-
alized Dirichlet boundary value problem, and either @ € H%(f2) (for o = 0) or
W € Hp(Q) NHL(Q) (for a > 0). In view of (8.3), @ = 0. It follows that w = w
is a positive solution in €2 of minimal growth at infinity in Q. Thus, w = Cv is a
ground state. |

In the following lemmas, we prove that the operator {P, B) is subcritical in §
if and only if it admits a Green function.

LeMmMA 8.10: If (P, B) is subcritical in €2, then for every y € Q there exists a
unique Green function G§ (z,y) of the operator (P,B) with a pole at y.

Proof: We may assume that I' # 0. Suppose that (P, B) is a subcritical
operator and fix y € ). By Lemma 8.7, there exists a positive solution in  ~{y}
of minimal growth at infinity of Q, denoted by w,(z). According to Lemma 6.2,
u,(z) = aGE (x,y) + u(z), where o > 0 and u € Hp(£2). We proved in Lemma
8.9 that if & = 0, then (P, B) is a critical operator. Consequently, for a subcritical
operator, a > 0. Therefore, the function GE(z,y) = iy%l is a Green function of
the operator (P,B) with a pole at y.

We need to prove the uniqueness. Suppose that there exists another Green
function F(x,y) with a pole at y. Since

Fle,y) _

lim ————
=5y GE (,y)

b

it follows that for every 0 < € < 1 there exists r. > 0 such that GB > ¢F in
B, (y). As aresult of F' being a positive solution of minimal growth at infinity
of , it follows that GB > ¢F in @\ B, (y), hence GB > ¢F in Q. Thus G? > F

in Q. Similarly G < F in Q. Consequently F(zx,y) = GE(x,y). |
LEMMA 8.11: (P, B) is subcritical in © if and only if SHp(2) ~ H(Q) # 0.

Proof: <« Suppose that SHp(Q) NHL(Q) # 0. If dimSHp(Q) = 1, then by
Corollary 8.8, SHp(2) = H%(Q), which contradicts our assumption. Hence
dim SHp(R2) > 1, which implies that Hp(Q2) # 0. By Theorem 8.9, (P, B) is
subcritical in Q.

= Suppose that (P, B) is a subcritical operator in € and recall that we may
assume that T' # 9Q. In view of Lemma 8.10, there exists a Green function
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G&(-,y) with a pole at {y}. By Lemma 6.2, GE(-,y) = aGE (-, y) + w(-), where
a>0and w € Hp(2) N HL(R). Thus SHp(Q) ~HL(Q) # 0. |

LEMMA 8.12: The operator (P, B) is a subcritical operator in Q if and only if
for every y € Q the operator (P, B) admits a (unique) Green function with a pole
at y.

Proof: = follows from Lemma 8.10.

<« Suppose that F(x,y) is a Green function of (P, B). We may assume that
I # 0Q. In view of Lemma 6.2, F(x,y) = oG8 (x,y) + @, where a > 0 and
w € Hp(Q). Clearly o > 0, and by Lemma 6.2, @ € Hp(Q) N H%(2). In the
light of Lemma 8.11, (P, B) is subcritical. |

In the following lemma and theorem, we present additional characterizations
of criticality and subcriticality.

LEMMA 8.13: (P, B) is subcritical in €2 if and only if SHp(Q) ~ Hp(Q) # 0.

Proof: < X SHp~Hp # 0, then SHp~HS # 0, and by Lemma 8.11, (P, B)
is subcritical in Q.

= Suppose that (P, B) is subcritical. According to Theorem 8.9, there exist
ug and uy in SH p such that ug # Cu,. We have

P — %(ﬂ)UzP 0+2( 1) . -l-i ~3/2 5/2Zaij3i(f‘_°)aj(@)
1

U Uy

> b ()] 20

1=

where Ag = Ao(x) is the ellipticity constant at . In addition,

B\/ugur = (—1)1/23110 + %(ZE)I/ZBM > 0.

1

Consequently /uou; € SHp ~Hp. ]

LEMMA 8.14: The operator (P, B) is subcritical in € if and only if there exists
W 2 0 such that P — W is subcritical.

Proof: Tf (P, B) is subcritical, then Lemma 8.13 implies that there exists u €
SHp~Hp. Define W = I—;u-li; hence (P —W)u 2 0in 2 and Bu > 0 on 9QNT.
According to Lemma 8.13, P — W is subcritical.
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On the other hand, if there exists W 2 0 such that P — W is subecritical, then
there exists u € SHp_w, and it follows that u € SHp ~Hp. Thus, by Lemma
8.13, P is subcritical. |

LeEmMA 8.15: If (P, B) is not a supercritical operator in 2, then for every W Z 0
the operator P + W is subcritical.

Proof: Let u € SHp. Clearly v € SHpyiw > Hpiw, and by Lemma 8.13,
P + W 1is subcritical. 1

THEOREM 8.16: The operator (P, B) is critical in Q if and only if for every
W 20, P+ W is subcritical and P — W is supercritical.

Proof: = Suppose that W 2 0. If P is a critical operator in €, then by Lemma
8.15, P + W is subcritical.

Moreover, if for some W 2 0 the operator P — W is not supercritical,
then, according to Lemma 8.15, the operator P = (P — W) + W is subcritical.
Consequently, if P is critical, then P — W is supercritical for all W 2 0.

< Take Wy 2 0 in Q. By our assumption, for every ¢ > 0, P + cWj is
subcritical. Hence P 4 W, admits a positive normalized solution u. € Hp_ . By
Lemma 6.3, Hp # 0. Therefore P is not supercritical.

In view of Lemma 8.14, if P is subcritical, there exists W 2 0 such that P—W
is subcritical. Thus, under our assumption, P is critical. |

LEMMA 8.17: The operator (P, B) is subcritical in Q if and only if for any
compact set K # 0 in § there exists u € SHp(Q) such that Pu > 0 on K.

Proof: If there exists u € SHp such that Pu > 0 in K, then, by Lemma 8.13,
(P, B) is a subcritical operator.
Suppose that (P, B) is subcritical in 2. Take f € C§(), f > 0, such that
f>0in K. We claim that there exists ug € SHp satisfying Pug = f in Q.
Recall our assumption that 9Q ~T # (). Take u € Hp. Then for each k > 1
(P+1/k)u > 0in £, and (B+ 1/k)u > 0 on 9Q~T. By Theorem 4.1, there
exists a positive Perron solution u, € C%(Q) N CY(Q \T) satisfying

{(8.4) (P+1/k)upy=finQ and (B+1/k)up=00n90Q~T.

If {u}52, is locally uniformly bounded in Q\T, then there exists a subse-
quence that converges to a positive solution ug of the problem

Pu=finQ and Bu=0o0ondQ~T,
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and the proof is completed.
Otherwise, we have a point xo € Q T such that ux(xg) — co. Set wi(z) =
17:((;))‘ Hence the sequence {wy} has a subsequence that converges to a positive

function wy € C?(2) N CY(Q \T) satisfying

(8.5) Puwy=0inQ and Bwg=0ondQ\T.

We shall show that in this case wg is a ground state, which contradicts our
assumption that the operator is subcritical.
First, it can be shown as in the proof of Theorem 8.5 that w; is a positive
solution of minimal growth with respect to the operator (P + 1/k, B + 1/k).
Now let K’ be a smooth compact set such that supp(f) CC K’ and denote
D =QNK'. Let we C(D~T) such that

w>0, Pw>0inD and Bw>0ondQ~T.
There exists C > 0 such that wy < Cw on JK'. Obviously,
(P+1/k)Cw>0in D, (B+1/k)Cw >0 ondQ~T.

Hence Cw > wy, in D and therefore Cw > wg in D. Accordingly, wy is a positive
solution of problem (8.5) of minimal growth in ©, and hence it is a ground state.
[ |

In the following theorem, we prove that for W with a compact support, the
subcriticality 1s an “open” property.

THEOREM 8.18: The operator (P, B) is subcritical in Q if and only if for every
W € C§(Q), W # 0 there exists eg > 0 such that (P —eW, B) is subcritical in
for every |e| < .

Proof: = Suppose that P is subcritical and let W € C§(Q), W #0. f W <0,
then (P — W, B) is subcritical in 2, for every nonnegative £. Otherwise, define
W, = max{W, 0} and K+ = supp(W,). By Lemma 8.17, there exists u € SHp
satisfying Pu > 0 in K. Take

el = ming+ (Pu)
7 2maxp+ (Wew)'

Hence, for every 0 < € < ¢4,

P-—eW)u>2(P—cWi)uz (P—exWi)uz 0inQ, Bu>0on 9.
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Consequently, P — ¢W is subcritical for every 0 < ¢ < ey.

By replacing W by —W we obtain e_ < 0 such that P — W is subcritical for
every e < e < 0.

< Take W € C§(Q2), W 2 0. By our assumption, there exists ¢ > 0 such that
P — cW is subcritical. Let v, € SHp_w(Q); then u. € SHp~Hp, and P is
subcritical. |

Proof of Theorems 1.3 and 1.4: These two theorems follow directly from Theo-
rems 8.9, 8.16 and 8.18 and Lemmas 8.11 and 8.12. |

We conclude the paper with some applications.

COROLLARY 8.19: Suppose that W € C*(Q~T), W # 0. For every t € int S
the operator (P, B) is subcritical in Q2. Moreover, if W € C§(2), W # 0, then
for t € 9S the operator (Py, B) is critical in €.

Proof: The first assertion follows from the proof of Lemma 6.3 and Lemma 8.13.
The second assertion follows from Theorem 8.18. |

COROLLARY 8.20: (a) Suppose that ¢; > ¢o in Q, 41 > 72 and 81 < B2 on
OO NT, and assume that not all the above inequalities are equalities. Fori = 1,2,
denote P; = P+ ¢;, B; = v; + Bi%. If (Py, Bs) is not supercritical in Q, then
(Py, B1) is subcritical in Q.

(b) Suppose that £, g Q9 such that 0 NT'y C 9Qs T2, and assume that
the boundary operators satisfy Ba|aa, <1, = B1. If (P, Bs) is not supercritical
in Qs, then (P, By) is subcritical in ;.

Proof: (a) If u € Mp, B, (), then u € SHp, B, () ~H}, 5 (?). By Lemma
8.13, the operator (Py, By) is subcritical in €.

(b) Suppose that (P, By) is not supercritical in 5. Take W 2 0 with a compact
support in Q9 €. According to Lemma 8.15, (P + W, By) is subcritical in
. Let K CC Q. By Lemma 8.17, there exists a function u € SHpiw,B,(Q2)
satisfying (P+W)u > 0in K. Since W = 0in 4, it follows that u € SHp g, (1)
and Pu > 0in K C 4. In view of Lemma 8.17, (P, B;) is subcritical operator
in Q. [ |

We now show that in general, if £, C {25, then statement (b) of Lemma 8.20
does not hold, and that dim %% = 1 does not imply criticality.
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Example 8.21: Let Qp = R" ~ Bg(0), where R > 0 and n > 2. Consider the
Neumann problem:

8_u =0 on 0Bg.

8. —Au=0inQ
(8.6) u=0in Qg, o

Then dimH#%(2g) = 1 for every R > 0. Moreover, for n = 2 the operator
(—A, %) is critical in 2 for all R > 0 (although it is subcritical for the Dirichlet
problem or if v 2 0), while for n > 3 the operator (- A, 5‘9;) is subcritical operator
in €2 for all R > 0.

COROLLARY 8.22: Suppose that Q, C €5 such that 9 ~T'1 C Qs ~Ts.
Suppose also that ¢; > cg in 1, v1 > v and 8, < B on 0§, ~TI';. For

1 = 1,2, denote P, = P+¢;, Bi = v; + Bia%, and suppose that (Ps, Bs) is

subcritical in Q5. Denote by ng_’f’i the Green function of (P;, B;) in Q;. Then

GEP (y) < GRP () in .
Proof: (a) By Corollary 8.20, (P, By) is subcritical in ;. Obviously,

T CF)
1m

Ty GS}Z’BZ (.’ y)

Hence, for every 0 < ¢ < 1 there exists r. > 0 such that GS‘I'B‘(-,y)
< (1+€)GH (-, y) in By, (y). Since

PGP () 2 0in Q1N By, BiGEP(-,y) 2 0 on 90 N T,

and Ggll’Bl (-,y) has minimal growth at infinity of €2y, it follows that Gg‘l’Bl (,9)
<1+ s)Ggi‘Bz(~,y) in ;™ B, (y), and hence in ;. The conclusion follows
easily by letting e — 0. |
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